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1. Introduction

In a world of unstructured data, NoSQL Databases are of never-ending popularity. While
SQL databases are still the most popular, two out of the ten most used databases already
are NoSQL (“DB-Engines Ranking”, n.d.). The trends show that the interest in NoSQL
increases a lot faster than in traditional databases (“DB-Engines Ranking”, n.d., section
ranking categories). That shows that it is necessary to consider NoSQL databases
as alternatives for relational databases and to discuss their advantages as well as their
disadvantages.

The hype around NoSQL Databases in today’s landscape can not be disregarded. The
popularity for NoSQL databases has been steadily increasing and gaining fans from all
over the database community.

But the term NoSQL was first used in 1998 already, introduced by Carlo Strozzi. While
the term can mean either ’not only SQL’ or ’no SQL’, it is uniform in the meaning
of not being a relational database system. Soon after, in the beginning of the next
century, NoSQL really started gaining momentum and first implementations of different
technologies started coming up. One of the first NoSQL technologies to come up was
the document oriented database implementation Metakit, soon followed by the first ever
graph database Neo4j in the year 2000. After that, many more followed and NoSQL
databases have become a central point to the database landscape today.

While it is clear that NoSQL databases will not replace all other database management
systems (DBMSs) in existence today, they are especially popular in a few distinct
scenarios: For instance, when prototyping a new application while the data format is
still undecided, NoSQL databases provide developers with flexibility unseen in usual
relational DBMSs. In addition to that, the fast response and processing times can
drastically increase an application’s performance, if used correctly. Also, the ability to
store data which does not adhere to a constant schema is significant with ever-changing
and uncontrollable data sources.

With the increasing amount of databases offered, choosing the right one can be over-
whelming. Not only does one need to decide for the right data structure, but also find
an implementation that fits the needs of your application.

Due to this growing importance of NoSQL databases in today’s IT-landscape and the

8



abundance of different technologies implementing NoSQL, it is of great importance to
provide some guidance for this topic. For this reason this book delivers not only an
overview over some of the most popular NoSQL databases but also analyses their features
in the context of the CAP-theorem developed by Brewer.

This eBook gives an overview of different types of NoSQL technologies that are relevant
today. First, it will talk about Key-Value databases including a quick general introduction
and the selected implementations Hazelcast, Redis and Riak. After that, Column Wide
Oriented databases are introduced, including the basics of Cassandra. Chapter 4 focuses
on Documented Oriented databases like Couchbase and Rethink DB. Lastly, the principals
of Graph databases are described with Neo4j as an example implementation.
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2. Key-value databases

Vanessa Jörns, Tobias Schiffmann and Victor Veal

Key-value databases or key-value stores are a classification of NoSQL databases. The
idea of key-value stores is to collect a key for every data set. Each set that is stored in
the database can be accessed by the key. Therefore the key needs to be distinct, whether
in a namespace or in the whole system. The database system has no pattern for the
values which is why it is not necessary to know about the type of the values that are
stored. This feature enables easy storage of any kind of data like serialized structures,
XML, text data, files... (Kudraß, 2015).

However, there are also disadvantages of this database management type. In terms
of operational actions like querying through the data, as one would do in relational
database management systems, key-value databases only provide simple operations like
get, put and delete. As a result of this constraint, data querying must be handled at the
application level.

Another difference to relational databases are the use cases. For simple applications,
which only require a system that is able to store and manage data (e.g. update entries,
join tables), is capable of representing real-world entities and describes relationships,
relational databases should be used. Key-value databases should rather be chosen if the
application or the system requires a good performance since key-value solutions are faster
than relational database systems (Mendis, n.d.).

For instance, an online application that is only responsible to enable quick access to
a profile, does not need to interact with entries of the profile itself. It should rather
guarantee that the user of the application can easily find the profile by providing the
corresponding key. To enable a quick access of the profile, it would be enough to only
search for the unique ID of the profile instead of querying across several attributes of the
data set.

Nevertheless, not all key-value solutions are similar designed. There are a lot of different
systems today. In the following chapters some database management systems will be
introduced. The focus will be on providing the reader a quick overview about the different
systems, how they distinguish from each other and how to use them.
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2.1. Hazelcast

The first system that will be explained is Hazelcast which gives an overview of the the
basic characteristics including a cheat sheet with needed commands. The next section
talks about Redis and the basic features as well as in-memory computing. Last but not
least the Key Value chapter is finished with a section about Riak.

2.1. Hazelcast

Vanessa Jörns, Tobias Schiffmann and Victor Veal

2.1.1. Introduction

Hazelcast is a company that is developing an in-memory computing platform consisting
of Hazelcast IMDG, Hazelcast Jet and Hazelcast Cloud. “Hazelcast Jet is an embeddable,
distributed computing platform for fast processing of big data sets”. It is built on the
foundation of Hazelcast IMDG on which this chapter focuses (“Hazelcast Jet”, n.d.).

An in-memory data grid (IMDG) is a rather new concept where data is stored in the main
memories of a computing cluster. One of the main aspects is the ability to automatically
scale and rebalance the cluster when decreasing or increasing in size. Here the data is
partitioned equally across the cluster nodes. IMDGs are usually used for implementing
distributed and scalable applications since they provide distributed versions of the
basic data structures (Tasci & Demirbas, 2015). Hazelcast IMDG is open source and
implemented in Java. However, there are also existing API’s for C/C++, .NET, REST,
Python, Go and Node.js.

As Hazelcast is designed to be lightweight and easy to use, it can be downloaded as a
compact library (JAR) and can be used by simply adding this JAR file to the classpath.
With Java as the only dependency there is no need to install any software (“Hazelcast
IMDG Reference Manual”, n.d.).

Firstly, the features of Hazelcast are specified and distinguished from other key-value
solutions. The next section talks about the CAP theorem and how it applies to Hazelcast.
After that a short manual for implementing Hazelcast for own applications is provided.
This inlcudes a basic set up as well as a configuration. For reference a cheat sheet with
the most important commands is included. In the end, the whole chapter about Hazelcast
is concluded and the advantages and disadvantages are analyzed.
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2. Key-value databases

2.1.2. Specification

Hazelcast consists of many same or similar features like other key value databases and
IMDGs. However, there are some major features which describe Hazelcast’s distinctive
strengths. The first and one of the main characteristics is that Hazelcast completely
computes in-memory rather than storage based. This makes Hazelcast extremely fast
but also volatile.

Another major feature is that Hazelcast relies on clustering with the approach of a
“masterless nature” of the nodes. This means that each node in the cluster has the exact
same functionality and operates in a peer-to-peer manner (Johns, 2015). So unlikely
other NoSQL databases, there is no master and slave hence there is no single point of
failure. All nodes are responsible for the same proportion of processing and storing
(“Hazelcast IMDG Reference Manual”, n.d.). The oldest node of the cluster automatically
becomes the “de facto leader” and manages the distribution of the data for joining nodes.
Since the data is redistributed for every joining or exiting node, the cluster rebalances
automatically and thus makes Hazelcast simple to set up and configure.

As Hazelcast consists of the basic features of an in-memory data grid, the data and
therefore the load is equally spread across the cluster. Here each node is the owner and
holds a number of partitions of the overall data. Therefore, saturation of a cluster can
simply be overcome by adding more nodes to the cluster. The cluster is then rebalanced
and the load for each node decreases. This means scaling is easy and fast which makes
Hazelcast suitable for handling big amounts of data. Nevertheless, since Hazelcast persists
data entirely in-memory, it has the main drawback that data will be lost with a node
shutting down. To prevent the overall cluster of losing the data a failing node has held,
Hazelcast distributes backups of each data partition among multiple other members.
This means in case of a node shut down, another node will have a backup of the data
and the cluster can be rebalanced without suffering any data loss and downtime (Johns,
2015).

Figure 2.1.: Hazelcast Nodes (Johns, 2015)

12



2.1. Hazelcast

This illustration shows the cluster structure as described above. It explains how the data
is partitioned in equal parts and spread across the cluster as well as the replication of the
data for backup. This is just a simplified version of the structure with only three nodes.
In practice each node would be responsible for multiple subsets of the data and not just
one data partition. So, for instance in order to get the data of Partition 1, the application
has to communicate with Node 1. The distribution of the data is dynamic and which node
is responsible for which subset of data usually changes over time. Hence, the allocation
is an internal operational detail and the application as well as the user usually does not
need to know it. Moreover, Hazelcast supports various distributed collectors, features
and processors. Besides storing the data in-memory distributed on many nodes, it is
possible to load data from diverse sources into varying structures, communicate across
the cluster by sending messages and to use the stored data for analytical processing
(Johns, 2015).

2.1.3. Hazelcast and the CAP theorem

As Hazelcast enables data storage for distributed systems, it may be interesting how the
CAP theorem applies to it. According to the chapters before, Hazelcast offers a storage
mechanism that distributes data across several nodes. Therefore the first aspect out
of the CAP theorem is network partitioning. According to the article Jepsen Analysis
on Hazelcast 3.8.3 (Luck, n.d.), Hazelcast is a PA system which means that it favours
availability over consistency. Due to the fact that data is partitioned, the problem of
keeping the data consistent over the whole system occurs. For example, if the user inserts
a new entry to a cluster, the whole systems needs to update this info so that the same
information can be provided from all nodes. This problem of having several nodes storing
inconsistent data is called split brain in an In-Memory Data Grid system.

Hazelcast offers a method that should avoid split brain. In the so called ”Split Brain
Protection” a minimum number of nodes is set on which write or read operations are
prevented. If a split brain happens, any sub-clusters that have a lower number of nodes
than the minimum number are prevented from accepting write operations. Nevertheless,
this method only reduces the time of inconsistency. Therefore it does not completely
avoid the inconsistent state of the system (Luck, n.d.).

Recently, the Hazelcast company has announced the ability to provide a solution that
supports both PA (availability over consistency) and PC (constistency over availability).
This feature should allow the user to adapt more flexibly to the requirements of the
application. So far, there are too less resources that can describe this new feature of
Hazelcast which is why this paper is currently not able to report about it (“What CAP
Theorem Means to a Business Leader”, n.d.).

13



2. Key-value databases

2.1.4. Implementation

Getting Started

As already mentioned Hazelcast is designed to be easy to use and therefore only require a
few steps to set it up running. First of all, the Hazelcast package has to be downloaded,
for example from the official website (“Hazelcast Downloads”, n.d.). The package is
offered in a compressed data format and has to be extracted afterwards.

Hazelcast does not need any software installations. It is written in Java and therefore
the platform to run Hazelcast on needs to be able to execute Java code. To do so a Java
Development Kit has to be ready to use which can be gathered from the Oracle website.
After ensuring Java code to run, Hazelcast is ready to be used.

The console application is an easy way to get in touch with Hazelcast and experience the
software. It can be started by executing the console scripts in the demo/ directory from
a terminal. Hazelcast creates a new member which will either create a new cluster or
will join a cluster if there already exists one. The cluster can than be filled by typing the
commands as the following example shows.

Figure 2.2.: Hazelcast Basic Commands (Johns, 2015)

When executing the scripts in another window, Hazelcast shows how the new member
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2.1. Hazelcast

joins the cluster and displays the two members and there addresses after a short period
of time.

Figure 2.3.: Example Member List (Johns, 2015)

Now the data is spread across the members. They both own a particular partition of the
data and store the other part as backup.

When closing one terminal to test Hazelcast’s reaction to a cluster node failure, the
remaining member tries to reestablish the connection to the closed one, but without
success. The terminal will than display the process of repartitioning the cluster and
prints a statement when it finishes.

Members and Clients

Besides the console application Hazelcast also provides the opportunity to include the
Hazelcast package in your code. For Java there is a package for members and one for
clients provided. Other programming languages only have clients to work with. The
difference between clients and members is that clients do not hold data. They connect to
Hazelcast cluster members and access the data on that way for read and write operations
(“Hazelcast IMDG Reference Manual”, n.d.). If Hazelcast has to be set up for an
application in C++ for example, the scripts in the demo/ directory can be used to start a
cluster member without needing to create a java application. The C++ application than
has to include the Hazelcast package and can access or create the data via the member.

Configuration

Hazelcast offers an XML file to adjust certain configurations in the bin/ directory. It
is possible to change the amount of backups and also the types of backups. There
are normal backups which are synchronized and therefore lock the data in case it is
manipulated. All other nodes have to wait until the data is changed in all backups and

15



2. Key-value databases

the changes are confirmed by the nodes which hold the backups. Additionally, there are
asynchronous backups. They do not lock any data and therefore bring a performance
increase because the nodes do not have to wait for them to confirm the changes. On the
other hand, it brings the risk of inconsistent data. Nodes could access data which are
no longer valid because the changes were not made on all backups after a manipulation
took place.

In general, increasing the number of backups will increase the read performance because
the data can be read on different nodes in parallel. The costs for this advantage are either
bad write performance in case of normal backups or inconsistency in case of asynchronous
backups.

Furthermore Hazelcast provides configurations about how big a particular data structure
can grow and how to act when there is no more space left.

Figure 2.4.: Hazelcast Configuration (Johns, 2015)

In this example the map called ”capitals” has a maximum size of 10 items per node.
When reaching this maximum, 20 percent of the data will be freed according to the
principle of Least Frequently Used (LFU). One synchronous and one asynchronous backup
will be created and the time to live for data sets is set. This means that data will be
deleted after this amount of seconds goes by. In contrast to this, setting the maximum
idle time will only delete a data set when it is not accessed after a certain amount of
seconds. Johns and the Hazelcast websites provide more information about configuration
and go more in detail.
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2.1. Hazelcast

2.1.5. Cheat Sheet

General commands

echo true|false turns on/off echo of commands (default false)
silent true|false turns on/off silent of command output (default false)
# <number> <command> repeats <number> time <command>, replace $i in <command>

with current iteration (0...<number-1>)
& <number> <command> forks <number> threads to execute <command>, replace $t in

<command> with current thread number ((0...<number-1>))
jvm displays info about the runtime
who displays info about the cluster
whoami displays info about this cluster member
ns <string> switch the namespace for using the distributed

queue/map/set/list <string>
(default value = ”default”)

@ <file> executes the given file script. Use ’//’ for comments in the
script

Queue commands

q.offer <string> adds a string object to the queue
q.poll takes an object from the queue
q.offermany <number>

[<size>]

adds indicated number of string objects to the queue (’obj<i>’
or byte[<size>])

q.pollmany <number> takes indicated number of objects from the queue
q.iterator [remove] iterates/displays the queue, remove if specified
q.size adds a string object to the queue
q.clear clears the queue

Set commands

s.add <string> adds a string object to the set
s.remove <string> removes the string object from the set
s.addmany <number> adds indicated number of string objects to the set (’obj<i>’)
s.removemany <number> takes indicated number of objects from the set
s.iterator [remove] iterates/displays the set, removes if specified
s.size size of the set
s.clear clears the set
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2. Key-value databases

List commands

l.add <string> adds string to the list
l.add <index>

<string>

adds string at a certain index

l.contains <string> checks if list contains <string>

l.remove <string> removes <string> from list
l.remove <index> removes element at <index> from list
l.set <index>

<string>

replaces value at <index> with <string>

l.iterator [remove] iterates/displays the list
l.size size of list
l.clear clears list

Map commands

m.put <key> <value> puts an entry to the map
m.remove <key> removes the entry of given key from the map
m.get <key> returns the value of given key from the map
m.putmany <number>

[<size>] [<index>]

puts indicated number of entries to the map
(’key<i>’:byte[<size>], <index>+(0..<number>)

m.removemany <number>

[<index>]

removes indicated number of entries from the map (’key<i>’,
<index>+(0..<number>)

m.keys iterates/displays the keys of the map
m.values iterates/displays the values of the map
m.entries iterates/displays the entries of the map
m.iterator [remove] iterates/displays the keys of the map, remove if specified
m.size size of the map
m.localSize local size of the map
m.clear clears the map
m.destroy destroys the map
m.lock <key> locks the key
m.trylock <key> tries to lock the key and returns immediately
m.trylock <key>

<time>

tries to lock the key within given seconds

m.unlock <key> unlocks the key
m.stats shows the local stats of the map
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MultiMap commands

mm.put <key> <value> puts an entry to the multimap
mm.get <key> returns the value of given key from the multimap
mm.size size of the multimap
mm.clear clears the multimap
mm.destroy destroys the multimap
mm.iterator [remove] iterates the keys of the multimap, remove if specified
mm.keys iterates/displays the keys of the multimap
mm.values iterates/displays the values of the multimap
mm.entries iterates/displays the entries of the multimap
mm.lock <key> locks the key
mm.trylock <key> tries to lock the key and returns immediately
mm.trylock <key>

<time>

tries to lock the key within given seconds

mm.unlock <key> unlocks the key
mm.stats shows the local stats of the map

2.1.6. Conclusion

Hazelcast is categorized as a key-value NoSQL solution, but since it is an in-memory
data grid there are some main features that should be emphasized which set Hazelcast
apart from the ordinary key-value databases. First of all, one of the key characteristics is
its simplicity. As mentioned above, Hazelcast’s only dependency is Java and therefore
it can be used by simply downloading the JAR file and including it in the classpath.
Furthermore, the cluster is structured as a peer-to-peer network, meaning there is no
master-slave relation which is usually common for NoSQL databases. Each node is
responsible for the same amount of data.

Another characteristic is the speed of Hazelcast since it relies on in-memory computing
(“Hazelcast IMDG Reference Manual”, n.d.). Knowingly in-memory computing also
comes with two main downsides: volatility and scalability. Hazelcast, however addresses
these issues. Volatility is solved by keeping the data of the nodes redundant. This means
that Hazelcast stores the data of each node on multiple members. So, if one member
fails, there is a backup and the whole cluster can be rebalanced and there is no overall
loss of the data. Scalability is achieved by just adding more nodes to the cluster, the
data is then automatically rebalanced and the work load for each member decreases.

These main features of Hazelcast also directly conclude some major advantages. To
summarize the already mentioned ones, Hazelcast is very easy and fast to install and
it is designed to provide fast computing. Additionally, since there is no master-slave
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concept, there is also no single point of failure. It is easy to scale either up or down
and redundant data storage protects from unexpected data loss (“In-Memory NoSQL
with Hazelcast IMDG”, n.d.). Furthermore, in contrast to ordinary key-value databases,
Hazelcast is designed for a distributed environment and therefore it is possible to provide
an unlimited number of maps and caches per cluster. Another advantage is that Hazelcast
can be implemented using multiple threads and thus benefits from all available CPU
cores (“Redis Replacement”, n.d.).

Nevertheless, Hazelcast relying entirely on in-memory processing still comes with the
drawback that this kind of storage is temporary. So, in case there is an overall system
shut down the data is lost since the backups are stored in the same cluster. In addition,
RAM is usually expensive which should be kept in mind when considering scalability.

Regarding the CAP theorem, as discussed above, Hazelcast can be either implemented as
an PA or PC system. When using Hazelcast as a PA system, it is neglecting consistency.
Meaning the system is not fully consistent all the time. On the other hand, in case of a PC
system, it fails to provide continuous availability. Furthermore, as a PC system the speed
of the data grid system relies on the slowest node. If backups are kept synchronously,
data is locked until the consistent state is achieved again (Johns, 2015). The other nodes
will have to wait until this particular block of data is unlocked again.

Hazelcast provides several and detailed manuals online as well as understandable tutorials
which makes it easy to adapt Hazelcast for own applications. However, scientific research
and benchmarking is very limited.

2.2. Redis
Laura Khaze, Leon Schürmann

Redis is a key-value data store. It was invented by Salvatore Sanfilippo in April 2009
and is released under the Berkeley Software Distribution (BSD) 3-clause (new / revised)
license. Therefore, it is a free and open source software product. Redis – originally an
acronym for remote dictionary server – is primarily used as a database, caching-solution
or a publish/subscribe message broker.

Redis stands out in the field of key-value data stores because of its simplicity and
speed. A part of the high performance can be attributed to the use of in-memory data
structures, while the use of C – a low-level systems programming language – provides some
advantages as well. Because of its unique properties, Redis is very popular. According to
db-engines.com, it is currently on rank seven of the most popular databases, and on
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rank one of all measured key-value data stores (“DB-Engines Ranking”, n.d.).

The goal of this section is to show the primary characteristics and available data types
of Redis. Clustered Redis setups will be evaluated in the context of the CAP theorem.
Finally, typical usage scenarios for this software will be evaluated, and the most important
facts are reiterated in the conclusion.

2.2.1. Primary characteristics

Redis has a few distinctive characteristics that make it unique in the set of NoSQL
databases covered by this book. This section will evaluate these characteristics in regards
to the overall influence on the software.

In memory

Redis is designed to run completely in-memory (“Introduction to Redis”, n.d.). Tradi-
tional databases rely on their data being stored on a hierarchical file system, typically
on top of a mass storage medium like hard disk drives (HDDs) or solid state drives
(SSDs). While these media often come in much larger sizes than random access memory
(RAM) modules, and have a significantly less cost per gigabyte, storing data on them
has a few drawbacks. For instance with HDDs, accessing data at a specific position
on the disk requires waiting for a data seek operation to complete – essentially letting
the physical platter spin to the sector where data is stored and moving the read/write
head into position. This makes random read and write operations slow. Even with
flash-based storage like SSDs, where seeking data is not an issue, there are many layers
of abstraction between the virtual file system and the physical data storage. Accessing
a file on file systems typically involves performing a so-called context switch into the
operating system kernel, accessing a hardware controller, serializing data over a wire
according to standards like SATA, and the disk controller finally accessing the data. All
of these operations take a considerable amount of time. (Edgar, n.d.) However, when an
application accesses its own main memory region in the system’s RAM, these operations
get processed natively in the central processing unit (CPU) and input/output memory
management unit (IOMMU) hardware, without involvement of the operating system
kernel or any peripherals.

In summary, storing data in RAM has advantages to system load, seek times, response
times and available bandwidth. However, at the time of writing, RAM is significantly
more expensive than traditional storage media. The cost per gigabyte ratio could be
higher then 238x (when comparing recent prices of a 512GB DDR4 ECC memory stick
with a 4TB 7200rpm enterprise HDD).
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Because RAM is a form of volatile memory, after a power loss or system reset, the data
is cleared. To prevent data loss with Redis, two types of persistence modes can be used
(“Redis Persistence”, n.d.):

• RDB files:
Redis can dump its entire data set into a binary RDB file that is sufficient to restore
a full and consistent snapshot of a Redis instance. However, creating this dump
takes time and memory – Redis forks its primary process and therefore duplicates
the entire in-memory data set. Copy-on-write techniques can reduce system load
with this process. It is unfeasible to use this method for continuously storing the
database’s state. (“Redis Persistence”, n.d.)

• AOF files:
Redis logs all of its transactions into an AOF file which can then be used to
reconstruct a full snapshot of a Redis instance. This file has the advantage of being
append-only, reducing random accesses and seek times. In addition to that, new
transactions can be constantly written to this file without interrupting the primary
Redis thread. However, as new transactions can make old ones irrelevant, these
files are often not as compact as RDB database dumps. Therefore, they can be
compacted to contain only required transactions to rebuild the current database
state. (“Redis Persistence”, n.d.)

RESP: Redis serialization protocol

To communicate with a Redis instance, a client has to use the Redis serialization protocol
(RESP). The primary goals of this protocol are to be simple to implement, fast to
parse and to be human readable. While it only relies on a bidirectional communication
channel with some guarantees regarding safety and packet order, it is currently only
implemented on top of transmission control protocol (TCP) or UNIX sockets. (“Redis
Protocol specification”, n.d.)

RESP is designed to adhere to a request-response pattern. Both the requests to the
server instance, as well as the responses have a well-defined human readable format.
Different parts of the protocol are always terminated with a carriage-return and new-line
character (CR LF or \r\n). (“Redis Protocol specification”, n.d.)

Each request is an array of a Redis command and additional string arguments. The
length of the array, as well as the size of all strings is sent as a prefix to the respective
element. This has the advantage of being both simple to construct, and Redis being able
to allocate a fixed size chunk of memory for each element. Therefore, once the data is
received, no post-processing is required. (“Redis Protocol specification”, n.d.)
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The response for a request always starts with an ASCII-byte indicating the response
data-type. For instance, this could be ”-” for a string error, or ”:” for a string-encoded
integer that is guaranteed to be a valid 64 bit signed integer value. Following this byte,
the payload is encoded as a (depending on the type binary safe) string. (“Redis Protocol
specification”, n.d.)

Overall, the Redis protocol achieves its goals of speed, simplicity and human readability.
Its properties make it easy to develop libraries for communication with Redis.

2.2.2. Data Types

Redis is not only a key-value data store but rather a data structures server. In a classical
key-value data store a string value is accessed via a string key while Redis supports
several other data structures (hashes, sorted sets, etc.). The basic data structures as well
as some extraordinary ones will briefly be described in this section. (“An introduction to
Redis data types and abstractions”, n.d.)

Strings

Strings are the most basic data type used in a Redis data store on which all complex
data structures are built. Strings are binary safe, which means it is possible to save any
kind of data (max 512MB per key), like a JPEG image or a serialized Ruby object, as
well as simple text.

Moreover, it is possible to use strings as atomic counters using commands in the INCR

familiy (INCR, INCRBY, etc.). Since it is not possible to declare an integer in Redis, strings
are used for those purposes. Furthermore, it is possible to use strings as random access
vectors due to commands like GETRANGE, SETRANGE or GETBIT. (“An introduction to
Redis data types and abstractions”, n.d.; “Commands”, n.d.; “Data Types”, n.d.)

Lists

Redis lists are a collection of strings sorted by insertion order with a maximum length
of 232 − 1 strings. Among other operations, it is possible to insert and delete elements
within a list (either from the head or tail), as well as getting a subset of a list. A list is
created when a push operation is performed on an empty key and conversely a list is
deleted (key clearance) if the list is emptied by an operation.
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Due to the combination of some operations, it is possible to create a customized list for
specific use cases. For instance, it is possible to use LPUSH and LTRIM to create a list
with a defined length which will never exceed a certain number of elements. Moreover
lists can be used to model a timeline in a social network like Instagram or Facebook.
In this example it would be possible to add new elements in the time line (LPUSH) and
receive only the most recent events (LRANGE). (“An introduction to Redis data types and
abstractions”, n.d.; “Commands”, n.d.; “Data Types”, n.d.)

Sets

Unlike lists, sets are an unordered collection of strings with a maximum number of
232 − 1 elements. Elements within a set are called members. Members can be added,
removed and returned from a set (SADD, SREM, SPOP). If a string is already contained
within the set, it is not possible to add it again. In this case, Redis will simply not add
the member, without indication of an error. Thus, it is not necessary for an application
to use SISMEMBER before calling the SADD operation on a set. Moreover it is possible to
display all members of a set and check whether a specific member is contained within a
set (SMEMBER, SISMEMBER).

Due to the characteristics of the SADD function, sets can be used to track unique things
like students ids lending a specific book in the library. (“An introduction to Redis data
types and abstractions”, n.d.; “Commands”, n.d.; “Data Types”, n.d.)

Hashes

Hashes are the most suitable data type to represent objects, since they are maps between
string fields and string values. Every hash can store up to 232 − 1 field value pairs.

It is possible to set fields and retrieve the value of fields, both either individually or
simultaneously (HSET, HMSET, HGET, HMGET). (“An introduction to Redis data types and
abstractions”, n.d.; “Commands”, n.d.; “Data Types”, n.d.)

Sorted Sets

Similar to sets, sorted sets are non repeating collections of strings ordered by a non-unique
score (smallest to greatest). Members within a sorted set can be added, removed and
returned (ZADD, ZPOPMIN, ZPOPMAX). Moreover it is possible to return members with a
certain score or at a certain position/index within the sorted set. Also, scores can be
increased and thereby updated.
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Thus sorted sets can be used to keep track of any kind of ranking like a competition. In
this case, scores can be initially inserted and later updated using ZADD. Due to operations
like ZRANGE or ZRANK, it is possible to receive the top or bottom half of the ranking,
or receive the rank of a specific member. (“An introduction to Redis data types and
abstractions”, n.d.; “Commands”, n.d.; “Data Types”, n.d.)

2.2.3. Multi-node setups / Redis Cluster

Originally, Redis only supported single-node and non-clustered setups. In combination
with its mostly single-threaded architecture, this allowed it only scale vertically. However,
with the introduction of both external clustering mechanisms (where a so-called proxy
would distribute and balance requests across different Redis instances) and internal
clustering support, Redis can now scale horizontally as well. Because of the variety of
clustering solutions, and focus on Redis itself, external proxies are out of the scope of
this evaluation.

The integrated clustering solution of Redis is called Redis Cluster. According to its docu-
mentation, ”[it] is a distributed implementation of Redis” (“Redis Cluster Specification”,
n.d.) and has three primary goals:

• High performance and linear scalability up to 1000 nodes

• Write safety

• Availability

However, by specification, these criteria do not have to be guaranteed at all times –
altogether or even on their own. (“Redis Cluster Specification”, n.d.)

Nodes in a Redis Cluster setup are connected over TCP bus connections. These connec-
tions (bus) are used to propagate information to all nodes in the cluster. Client requests
to nodes in the cluster are not forwarded to the data-holding node. Instead, the client is
redirected to the correct node by the use of MOVED or ASK error return codes. The data
distribution is decided by the CRC-16 value of the string key. Each unique CRC-16 value
is called a keyslot. All keyslots have one master and n ≥ 0 slave nodes. (“Redis Cluster
Specification”, n.d.)
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Positioning in the CAP theorem

In the following, different criteria of Redis Cluster regarding typical usage guarantees in
a distributed setup are evaluated:

Consistency:
According to the official Redis website, ”Redis is not able to guarantee strong
consistency” (“Redis Cluster Tutorial”, n.d.). This can be implied from a few
scenarios.

For instance, when a client writes a key to the respective master node for this
keyslot, the operation is acknowledged instantly. The master then replicates this
write to all slave-nodes for this keyslot. However, when these slave nodes are not
reachable, the write is not fully synchronized across the network. In the case of
a network partition, a slave that has not yet received this write operation may
be promoted to become a master. The write is then lost, although it has been
acknowledged. (“Redis Cluster Tutorial”, n.d.)

In another example, the network is partitioned into a master-majority and a
master-minority partition. For a short amount of time, both partitions accept
write operations which are also acknowledged. However, the minority-partition will
eventually completely block any write operations. After the network is reunited,
the previous writes to the minority-partition are simply discarded. Redis avoids
merge operations, as these provide architectural challenges and might not work well
on large data (“Redis Cluster Specification”, n.d.). “Redis Cluster Tutorial”, n.d.

Availability:
As already stated regarding the consistency of Redis Cluster, the minority-side of
a network partition will refuse write-operations after a timeout. Therefore, Redis
Cluster is not available. (“Redis Cluster Specification”, n.d.)

Even on the majority-side of the network, some write operations might be refused
for a short amount of time. After an initial detection of a network partition and a
timeout, slaves of missing keyslots get promoted to be master nodes. As soon as
a master exists for all keyslots, the majority-partition is available again. (“Redis
Cluster Specification”, n.d.)

Depending on the kind of setup and test scenario Redis tends to be either AP or CP. Since
this is only a small propensity, for systems or applications requiring the characteristic
AP or CP, a database designed for a clustering solution should be used. This opinion is,
in addition to the official documentation, shared by Davis, 2015 and others. Redis was
initially designed as a single node solution with the primary focus on performance.
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2.2.4. Typical use cases

Redis can be used for a variety of different purposes and use cases. In the following,
three typical use cases are stated.

Redis can be used as a general purpose data store, especially if the data and application
requires simple data structures and high performance. Nevertheless, Redis is not suitable
for every use case requiring a general purpose data store. Since there are no complex
data types, besides the ones mentioned in section 2.2.2, and it is not possible to model
relations between different data objects (as in a relational database), use cases with these
requirements can not be implemented using Redis. Moreover, the high memory usage of
Redis can either exceed the capacity of preexisting infrastructure, or increase the cost of
purchasing infrastructure drastically.

Due to these characteristics, Redis is often used to store volatile data, as a caching
mechanism or as a message broker. (“Commands”, n.d.; “Introduction to Redis”, n.d.)

Caching

Based on the characteristics of Redis, Redis is ideal for a caching mechanism. Common
DBMSs usually have high latencies and response times which could make the user
interface of an application feel sluggish.

To solve this issue, a caching mechanism can be used. Already prepared and computed
data, which is used several times, is stored in the caching mechanism with the result of
less interaction between the user interface and the DBMS.

In figure 2.5, the difference between server queries to a database with and without Redis
as a caching solution is pictured. The second option (with a Redis cache) reduces the
response time since only queries, whose data is not already cached, are forwarded to the
DBMS.

Redis-keys can be marked for deletion after a specified timeout (TTL), and display the
time that has elapsed since the key was last modified (OBJECT IDLETIME). This enables
automatic deletion of seldom used data. Thus Redis can be used as a caching solution for
image previews, fetched data from APIs, as well as session data. (“Commands”, n.d.)
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Figure 2.5.: Redis Caching Solution (Akinseye, 2018)

Message broker functionalities

Since Redis implements a publish-subscribe pattern, it is possible to use Redis as a
message broker.

A publish-subscribe pattern is a mechanism where subscribers can receive informa-
tion/messages from publishers. A typical publish-subscribe system consists of several
subscribers and several publishers, where one application can be both subscriber and
publisher. Publishers can provide information on specific issues without any knowledge of
possible subscribers. Each message is assigned to a topic, which subscribers can subscribe
to. In turn, these do not know if and which publisher published on a specific topic.
(“Publish/Subscribe”, n.d.)

Redis offers the typical publish-subscribe pattern features. Clients can subscribe
(SUBSCRIBE, UNSUBSCRIBE) to a topic as well as push messages to a specific topic/channel
(PUBLISH). The payload of the message is a binary-safe string, which enables the clients
to exchange any kind of data.

This message broker functionality is especially useful for event notifications. For instance
the clients can be notified about changes within the data store. Moreover, Redis’ publish-

28



2.3. The Riak Key-Value Store

subscribe implementation can be used to exchange arbitrary data. However, because this
is essentially a routed protocol, it is less performant compared to peer to peer connections
such as TCP or UNIX sockets. (“Pub/Sub”, n.d.)

2.2.5. Conclusion

In this section, the key-value data store Redis was introduced by explaining the main
characteristics and some of Redis’ data types. In addition to that, a clustered Redis
setup is analyzed in regards to characteristics from the CAP theorem. Finally, some of
the most popular use cases were reiterated.

To summarize, Redis is much more than a traditional key-value data store. Different data
types, carefully chosen architectural decisions and a speed-optimized implementation
make it flexible and better suited for some applications. For instance, Redis is an
excellent data store for caching purposes. While the publish- / subscribe feature does not
necessarily have a great influence on the storage features, it can be used in combination
with those to signal other Redis clients that some keys changed.

However, having a purely in-memory data store means that it is expensive to operate
with vast amounts of data. Also, data persistence is possible, but only with a few
disadvantages. Last but not least, Redis can be used in a clustered setup. The internal
clustering mechanisms (Redis Cluster) do not provide strong guarantees regarding
availability as well as consistency. This severely limits its use-cases to applications, where
both the correctness and presence of distributed data is not a strict requirement.

2.3. The Riak Key-Value Store
Daniel Rutz, Paul Thore Flachbart

2.3.1. Introduction

The Riak KV authors describe Riak KV as “a distributed NoSQL database designed to
deliver maximum data availability by distributing data across multiple servers. As long as
your Riak KV client can reach one Riak server, it should be able to write data.” (“Riak
KV”, n.d.) Actually, this sentence already describes most of Riak’s characteristics:

• Riak has been developed with availability in mind. It constructs a distributed
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system of nodes without master node. Even though this system can’t guarantee
consistency, it makes sure that the database is available as long as one node is
accessible.

• Riak is a NoSQL database. Instead of using the Structured Query Language (SQL)
language, Riak provides an HyperText Transfer Protocol (HTTP) (“HTTP API”,
n.d.) and a Protocol Buffers (“Protocol Buffers Client API”, n.d.) interface for
Create, Read, Update, Delete (CRUD) operations on key-value pairs.

There are two different databases besides Riak KV:

• Riak TS has been developed for time series data. It is not scheme-free: You have
to describe tables in a way similar to SQL (“Riak TS”, n.d.).

• Riak CS is a cloud storage solution. It has been developed to be compatible to the
Amazon S3 application programming interface (API) (“Riak Cloud Storage”, n.d.).

This chapter will deal with advantages and disadvantages of Riak KV. Furthermore, we
will compare Riak KV to Redis and categorise it according to the CAP theorem. The
other Riak1 variants are not in the scope of this text.

2.3.2. Characteristics of Riak

Riak is a key-value store written in Erlang. According to Kuznetsov and Poskonin (2014),
it is inspired by the Amazon Dynamo whitepaper (DeCandia et al., 2007). Its main focus
is distributivity: By using concepts such as consistent hashing and synchronisation using
vector clocks, it does not need a master node to distribute data across multiple nodes.

Riak can be used in a eventually consistent or in a strongly consistent mode: When used
with eventual consistency, an accessible Riak node will always answer to a request, but it
cannot guarantee the response to be up-to-date. With strong consistency, Riak internally
tries to solve the Byzantine Generals problem by achieving a distributed consensus
between the nodes about the current value. If less than half the replications of a value are
not available, however, Riak will not be able to return a response as the required quorum
will not be reached. It should be noted that strong consistency is flagged as experimental;
the Riak authors discourage its usage in production environments. (“Strong Consistency”,
n.d.)

Riak splits its keyspace into so-called buckets. A key can be used multiple times as long
as all the usages are in different keys. Access to a value must be done with bucket and

1From now on, Riak KV will be referred to as Riak.

30



2.3. The Riak Key-Value Store

key.

A really interesting feature of Riak is the possibility to use MapReduce for queries of data:
By sending a special query to the cluster, it can distribute the collection of requested data
to all nodes. Every node now only needs to process only a subset of all key-value pairs.
This allows distribution of computing power over multiple nodes (“Using MapReduce”,
n.d.).

2.3.3. Placement inside CAP Theorem

The CAP Theorem as stated by Fox and Brewer (1999) says that a database system is
not able to be consistent, available and partition tolerant at the same time. Riak has
been designed with this principle in mind. In its standard configuration, Riak tries to
be available under every circumstances, even when parts of the cluster are not available.
This leads to eventual consistency because a node might not know about changes inside
a key-value pair yet. This makes Riak an AP database. If Riak is configured for strong
consistency, it gets unavailable if the node can not reach a distributed consensus about a
value. However, Riak can guarantee the answer to be the lastest. That means that Riak
in strong consistency mode is a CP database.

2.3.4. Advantages and Disadvantages

Riak has several advantages and disadvantages:

• Its main advantage is the high level of availablility. Every node of a Riak cluster
is able to answer queries, and even in the case of other node being unavailable, a
Riak node will still try to answer. Writing data to a Riak node is always possible
as long as the node is available.

• Riak has been developed for high scalability. Because Riak does has a masterless
structure where data automatically get redistributed when node are added or
removed, it is able to handle bigger amounts of data without problems. In order to
support this, adding and removing nodes in a cluster has been designed to be very
easy.

• Its main disadvantage is the very low consistency guarantee. In some cases, it
might be better to get no result at all instead of getting wrong or old data. When
using Riak, this problem must always be addressed.

• The original development company of Riak is out of business. That means that

31



2. Key-value databases

there is no official commercial support for Riak. Instead, it is developed by the
community. Especially in large production environments, this uncertainty about
further support can lead to problems.

• The Riak developers state that Riak is not suitable for small deployments because
they do not need distributivity. For smaller databases, several alternatives are
available.

2.3.5. Comparison to Redis

As Redis and Riak both are key-value stores, a comparison is very interesting in order to
show their main differences:

• While Riak uses HTTP or Protocol Buffers for access, Redis has a custom query
language (“Redis Protocol specification”, n.d.).

• Riak and Redis have different main focuses: While Riak is optimised for high
availability, Redis is optimised for speed (“Introduction to Redis”, n.d.).

• Riak is a persistent database. Redis offers persistency, too, but has been optimised
for usage as an in-memory database.

• Riak offers masterless replication. Redis however uses a client-server model for
replication of data (“Redis Cluster Specification”, n.d.).

These points show that Redis is tailored for in-memory caching in special, while Riak
has been developed for actual persistent business data.

2.3.6. Test Implementation

In order to demonstrate the usage of a Riak database instance, a test application for
NodeJS has been written. There is a NodeJS client for Riak that can be used (“The
Riak client for Node.js.” n.d.). It offers a special function fetchValue, which takes the
bucket that holds the data, and the specific key the user wants to access. It will then do
the query and call a callback afterwards. In our case, we store user data inside the Riak
database. The username is used as the key. With the key, we get a user object from
Riak that contains the password. We compare to the password given by the user. If it
does not match, an error is shown. Otherwise, we display the user’s name as saved in
the database. This access together with error handling took 10 lines, showing that it is
easy to retrieve data from Riak.
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2.3.7. Conclusion

We have introduced Riak, a distributed key-value store optimised for availability. We
have shown different advantages and disadvantages of the database. Afterwards, we
stated its main differences to Redis as an example for another key-value store. In the
end, we have shown a test implementation for an application using Riak.

Our research shows that Riak is ideal for big deployments with large databases where
availability is really important. It should be noted, however, that Riak does not offer
high consistency, which might be a problem in several use cases.
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3. Wide Column Store – Apache
Cassandra

David Marchi, Daniel Schäfer, Erik Zeiske

3.1. Introduction

The following chapter aims to bring an overview into the Cassandra data store as well as
detailed information about how it works and its architecture. After that, a detailed guide
on how to model data for Cassandra in order to make the best use out of the architecture
will follow. Transitioning into technical details and examples on how Cassandra works,
what features and pitfalls it brings with it.

Many large companies and organizations have deployed Cassandra clusters. Here is an
overview of exceptional cases:

CERN Storage backend for ATLAS detector (Sicoe, 2012)
Netflix 2,500 nodes, 420 TB, over 1 trillion requests per day

Migrated from Oracle to Cassandra (Cockcroft, 2011)
eBay 6 billion writes and 5 billion reads daily

Single Cassandra table of 40TB (Patel, 2012; Qu, 2014)
Apple More than 75k Cassandra nodes with 10PB in production

Several clusters with 1000+ nodes each (Kohli, 2014)

This shows that Cassandra is heavily used in large-scale deployments of big tech companies
and other organizations. The significance of Cassandra and the problems it solves is,
with an ever growing amount of data, high. For trying out Cassandra on a single node
or a small local cluster however all of those settings can be left at their defaults. To
keep this chapter at a manageable size we will not explain the topological features, only
mention which are available. This chapter will be wrapped up with instructions and
hints for trying out Cassandra on a single node or a small local cluster. Cassandra can
be made aware of the relative physical location of all nodes, for example in which rack or
data center they are. For real world usage it is recommended to do that and also adjust
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the configuration to take that into account.

3.1.1. Overview of Cassandra

Cassandra is a Wide Column Store Database. It is table-like but not relational. The
architecture and design make it a distributed and masterless data store for large data.
It is written in Java and can be run distributed on commodity hardware. Since it
is masterless there is no single point of failure. Nodes (connected instances running
Cassandra) can be hot-swapped or be temporarily down without affecting the availability
of the Cassandra cluster. Adding a new node and removing one will elastically increase or
decrease the cluster size without any major impact on the distributed system. This can
be refereed to as elastic scalability. All these features make Cassandra highly available
and fault tolerance. Depending on the settings, a cluster of Cassandra nodes can be more
or less consistent. From eventually consistent, the lowest setting for consistency, to highly
consistent. This can be referred to as tunable consistency and allows for a configuration
dependent classification in the CAP Theorem. More on that in section 3.7.

Cassandra was originally developed by Facebook in 2008, the co-author of Amazons
DynamoDB was involved in the development process. Hence Cassandra shares similarities
with the architecture of DynamoDB (Lakshman & Malik, 2010). Currently (Apr/19)
it is a free software project of the Apache Foundation. Development is mainly driven
by DataStax. A company designated for commercial Cassandra use and enterprise
support.

3.2. Wide Column Store

A wide column store is a tabular but not relational approach to store data. It is not
column oriented, since the rows are stored together. A row can have missing columns
which are not stored on disk. This makes it sparse. It can be thought of like a key-value
store where the value can have a subset of a predefined set of columns. Or, put in other
words; ”Sparse, distributed multi-dimensional sorted map” (Chang et al., 2008) The
naming can be explained as a key value store with wide (complex) values that consist of
columns.

Figure 3.1 shows in a graphical representation the structure of a wide column store. The
name is the primary key and different people have different columns. The columns with
no data are not stored as null but rather not even stored as a whole.
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Figure 3.1.: Example entity relation model (database.guide, 2016)

3.3. Use-Cases Cassandra

Cassandra comes with strong benefits over other database systems. These benefits
and extra features make it miss some features which one might expect as standard in
database systems. It should be carefully considered whether to use Cassandra or not
since it is not the jack of all trades. One benefit of Cassandra is fast writes which
means it can handle a high throughput but the latency might not be too short. These
writes include the operations of INSERT, UPDATE and DELETE. The way Cassandra
handles those operations make them equal to a ”regular” write operation. This will be
explained in section 3.5. Another key benefit is high availability. Due to its architecture
and depending on the settings, a Cassandra setup can be highly available. Since one
of the base assumptions of a distributed system is the expensiveness of inter-node
communication, it has an linear horizontal scalability. The communication between nodes
does not increase with the size of node. Due to its distributed nature, the architecture
does not rely on a master-slave setting and comes masterless. Furthermore it can be
configured to work with several clusters, globally distributed, which makes for example
multicloud Cassandra setups possible. This means that any client can read from and
write to any node. As described previously Cassandra is a wide column store database
which results in having a flexible schema where rows can have missing columns that
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are not stored on disk. Cassandra has its own query language which is similar SQL
and called Cassandra Query Language (CQL). This makes it easier to use Cassandra if
knowledge from SQL is available.

If any of these points apply to a project or Use-Case, Cassandra is probably a good fit.
But to be sure it is even more important to rule out the cases where Cassandra is not a
good fit. The following paragraph will describe limits of Cassandra. If the use-case needs
any of those features, Cassandra will most likely not suffice to fulfill requirements. First,
a single system instance with Cassandra should be avoided. Most of the features and
benefits come with multiple node setups. Use-Cases which would need a dozen nodes
seem to find a great fit with the distributed storage system.

Equally important is the way data has to be stored and accessed. Due to its architecture,
data has to be modeled different in Cassandra. ACID transactions are not possible and
tables are fine-tuned for pre defined queries. Those queries should be known early on
and not change during use. It is not easily possible to change or extent those queries.
Furthermore there are no relations between tables. It is possible to link, connect and
reuse IDs but this has to be handled on client side, there are no operations on those IDs
available. Additionally column aggregation operations such as GROUP BY are also not
possible, since such operations would be very inefficient in a distributed wide column
storage.

Having a lot of updates and deletes interspersed with reads slow the system down due to
the way of handling requests - just appending data, not changing records and merging
them while reading. This has affects on data validation as well. It is not possible to
check on write for data uniqueness, constraints or auto increments. (Carpenter & Hewitt,
2016)

To sum it up there are general Use-Case conditions where Cassandra is a great fit. In
order to make an educated decision the following key-points should fit with the Use-Case
and environment:

• Large Deployments

• High write throughput

– ”High performance at high write volumes with many concurrent client threads”
(Carpenter & Hewitt, 2016)

• Geographical distribution of data and database clients

• Different columns per row
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3.4. Data Modeling in Cassandra

Compared to other database systems like traditional relational database systems, data
modeling is different in Cassandra. Here is a little example to understand the different
way of thinking when modeling data for Cassandras wide column data store.

Figure 3.2 shows an example entity relationship diagram of data in the context of a hotel
environment. The hotel has the attributes address, phone, name and an id as unique
primary key. Each hotel has certain amounts of rooms which store information them-self
and are connected to other entities.

Figure 3.2.: Example entity relation model (Carpenter & Hewitt, 2016)

In figure 3.3 an example database model for an relational database of the ERP from
figure 3.2. The connections and primary keys previously noted connect now the table to
enable complex join queries over multiple tables later on.
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Figure 3.3.: Example RDMBS normalization transition (Carpenter & Hewitt, 2016)

The fundamental difference between those two modeling types is the starting point. In
the example above it was all about what data has to be stored and how that data is
connected to each other. In data modeling for Cassandra the queries are the starting
points. This means for the architect that they first have to think about queries the
database system has to answer.

Figure 3.4.: Planned queries against database system (Carpenter & Hewitt, 2016)

Figure 3.4 show this circumstance; queries the system later has to answer to. This
diagram describes a classical use-case for the hotel environment in which the database
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would come to work. A user searches for hotels, checks information about it and reserves
it.

Figure 3.5.: Model and denormalize tables to fit queries (Carpenter & Hewitt, 2016)

Transitioning from the collection of queries in figure 3.4 to accessible tables, can be seen
in figure 3.5. It can be seen that data is stored redundantly, available on multiple tables.
This does not bother the modeling since queries later on will not use any sort of join
operation and be limited onto one table request - which is precisely why data is stored in
multiple tables. Each table fulfills one of the queries previously thought of. Furthermore
since there is no referential integrity it is possible to store ids in tables but the database
system does not provide any functionality to make use of and / or connect those ids.

In order to properly graph and document this type of modeling, a uniform and new way
was proposed to write down data modeling for Cassandra and other similar systems
with same needs. (Chebotko, Kashlev, & Lu, 2015) These diagrams are called Chebotko
diagrams and include the way queries are planned. This can be seen in figure 3.4. Out of
this table, the diagram can be concluded. Creating to each query an unique table with
all necessary information. The arrows with the queries numbers (Q1, Q2 ..) will be kept
to keep the context and relation to the previous diagram (3.5). This can be seen in a
descriptive example section around figure 3.6
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Figure 3.6.: Model and denormalize tables to fit queries (Carpenter & Hewitt, 2016)

3.5. Using the Cassandra Query Language

This section will give a short overview of how to interact with a Cassandra database
using CQL, which is mainly inspired by SQL (Cannon, 2012; DataStax, Inc., 2019a;
Meng, 2014).

3.5.1. Creating a keyspace

This similarity becomes clear by looking at how the creation of a keyspace is performed:

/* Create a new keyspace in CQL */

CREATE KEYSPACE data WITH replication =

{'class': 'SimpleStrategy', 'replication_factor': 3};

/* Create a new database in SQL */

CREATE DATABASE data;

41



3. Wide Column Store – Apache Cassandra

Hereby the only difference is that instead of creating a database, a keyspace is created
and it is possible to specify which replication parameters should be used. What these
parameter mean and how they should be used is explained later in section 3.7 (Meng,
2014).

3.5.2. Creating a table

After creating a keyspace a table has to be created in order to hold the data. As a
database is always part of a keyspace it is either necessary to specify the keyspace in
every query or to simple scope every subsequent query into a given keyspace by using
the USE query (DataStax, Inc., 2019j):

USE data;

Using this keyspace a table can be created using the same syntax as in SQL (Cannon,
2012; DataStax, Inc., 2019b; Meng, 2014):

CREATE TABLE groups (

group_name varchar,

group_location varchar,

added_date date,

username varchar,

PRIMARY KEY (...)

);

Hereby the only difference is how the primary key can be specified:

partition key clustering key clustering key

| | | |

((groupname, group_location), added_date, username)

Figure 3.7.: Parts of a primary key specification in CQL (J. Miller, 2014)

The first part of the definition will always be the partition key. If it is a compound of
several columns they need to be surrounded by parentheses and separated by comma in
order to state that they as a whole form the partition key. If necessary the partition key
can be followed by several clustering keys. Keep in mind that the data will be ordered
first by the first clustering key, after that by the second and so on. This means that an
ORDER BY has to first be called on the first clustering key and a second ordering can be
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done on the subsequent one. It will not be possible to only order by the second or other
subsequent clustering keys when not ordering by the first. Any other non-primary key
column cannot be used for ordering (DataStax, Inc., 2019b; J. Miller, 2014).

3.5.3. Interacting with data

In order to manipulate Cassandra only provides three possible methods (Lakshman &
Malik, 2010):

• insert(table, key, rowMutation)

• get(table, key, columnName)

• delete(table, key, columnName)

All having in common that the entire primary key has to be specified in order to interact
with the data. The only exception hereby is the getting of data where only the partition
key has to be specified.

Important to note is that there is no interaction to update a data entry. The reason for
that is that as Cassandra is optimized for high write throughput is is very costly to read
any data before writing. This means that the update and insert known from SQL will
perform the same action on the data (Cannon, 2012; Meng, 2014):

/* Inserting Data */

INSERT INTO Person (lastname, name, email)

VALUES ('Doe', 'Jane', 'jane@example.com');

/* Updating Data */

UPDATE Person SET email = 'jane@example.com'

WHERE lastname='Doe' AND name = 'Jane';

As getting and deleting data is also similar to SQL there is no need to go into it any
further in this section (DataStax, Inc., 2019h; Meng, 2014):

/* Selecting Data */

SELECT * FROM Person

WHERE lastname='Doe' AND name = 'Jane';

/* Deleting Data */

DELETE FROM Person

WHERE lastname='Doe' AND name = 'Jane';
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3.6. Local reads and writes

In order to perform the requested changed to the data they have to be written into the
database. This section will take a look into how the changes will be written on a single
node not taken into account the cluster.

Figure 3.8.: Writing data to Cassandra node (DataStax, Inc., 2019f)

In figure 3.8 it can be seen that the write process to Cassandra involves three steps:

1. Write to journal Hereby the query is simple append to the journal on the disk,
making it persistent even if the node goes down. As this action is a simple append
it is very fast and leaves the data in a temporal order in the journal.

2. Write to memtable After writing to the journal the change is performed in the
memtable putting the data into a Sorted String Table (SSTable). This form is the
same form in which the data will be written on disk. Here it is important that only
the required data is written if there are any columns not specified it will not be
written to the memtable. In contrast to writing NULL to a column which will delete
it by setting a tombstone on it (See Appendix A).

3. Flush to disk when memtable is too big This allows to simply flush the data
and some metadata to the disk when it gets to big for the memory to hold it.
Hereby a new data file is created, not touching any of the previously written files,
making this action also quite fast as no lookups have to be performed.

4. Compacting written datafiles As writing to disk is only an append and will
create a new datafile for every flush, the whole database will be scattered over
multiple files with redundant data if entries were written after flushing them to disk.
In order to merge these files it is possible to compact the files into one resulting in
faster reads later (DataStax, Inc., 2019g).
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After writing the data it also can be read again as shown by figure 3.9:

Figure 3.9.: Reading data from Cassandra node (DataStax, Inc., 2019e)

1. Check caches First the last query cache will be checked. Returning the data right
away if it was requested in the near past.

2. Check memtable If not found in the caches the memtable will be checked whether
it has the most recent activities on the requested data.

3. Find SSTable and location If no entry was found in the memtable the data on
disk will be checked by firstly determining in which memtable dump the dataset
will be and then retrieving it from there. For a detailed overview of this take a look
at figure 3.9

4. Merge with memtable If it was necessary to retrieve the data from disk the
data will be written to the memtable to allow later queries on the same data to
succeed earlier.

3.7. Cluster Architecture

Which node has a certain piece of data is not determined by a master server. Any node
has the ability to determine where a particular piece of data is or must be stored just
by hashing the partition key of a row. The result of that calculation is called a token.
All nodes are placed somewhere on a token ring (see figure 3.10) and store the data of
the tokens they are assigned to.(Lakshman & Malik, 2010, p. 2) (DeCandia et al., 2007,
pp. 209, 210)
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A

B

C

D

0 to 6364 to 127

128 to 191 192 to 255

Figure 3.10.: Token Ring

The tokens from the node’s location to the next node belong to it. That means if the
hashing of a partition key results in a token between 0 and 63 the data will be written
to or read from node A. Keep in mind: This doesn’t however mean that this node is in
control of that data - when replication is configured all replicas are equal. The node with
that token is just the starting point to determine the first of the replicas.

Replication To ensure that all data continues to be available even if some nodes go
down Cassandra replicates the data in the cluster. Replication can be defined for each
keyspace when it is created. There is a simple strategy and a network topology aware
strategy. (DataStax Inc., 2019a)
The SimpleStrategy places the n replicas of a piece of data on the next n− 1 nodes1

located clockwise on the ring after the node with the token. (Lakshman & Malik, 2010,
p. 3)
The NetworkTopologyStrategy strategy tries to be smart about the physical placement
of replicas. It needs to be taught about in which datacenter and rack the nodes are
located. To avoid losing data when an entire rack or datacenter fails this strategy prefers
to spread it out. It is recommended to use this strategy in production, unless all nodes
are in a single rack, where both strategies are equivalent.

Rebalancing When a new node is added or a node is removed it is likely that the
distribution of nodes on the ring becomes imbalanced. When the ring is imbalanced

1The first node that holds the data also counts as a replica.
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nodes are responsible for different amounts of data and experience different amounts
of load. Since nodes are recommended to be of the same performance level2 this is not
optimal. Some nodes are overloaded and others underutilized. To balance the ring the
nodes are moved to equidistant positions on the ring. When this happens data is bound
to be assigned to a new owner node - that data will be moved. (Bailey, 2012) The hash
function used to transform partition key into is a so called consistent hash function. The
difference from a regular (cryptographically secure) hash function is that the output
wraps around and thus can be represented as a ring. It also has the property that it
minimizes the amount of shifting data that is necessary when a node is added or removed.
(Karger et al., 1997)

Figure 3.11 visualizes an imbalanced ring and how the green nodes can be repositioned.

A B

CD

A B

C

D

Figure 3.11.: Rebalancing

Nodes A and B can stay at their location, C and D are repositioned. C is moved further
along the ring in a clockwise direction. It gives much of the data it was previously
responsible to B and takes all of D’s data. D is moved past A and takes approximately
half of its data.

Virtual Nodes By default each node is placed on the ring just once, when using virtual
nodes they each can be placed on the node multiple times. This brings four advantages:
(Lynch, 2016; Williams, 2012)

• Nodes can occupy a specified proportion of the ring

• Tokens are automatically calculated and assigned to nodes rightarrow No manual
rebalancing

2Or be balanced by dividing them up into virtual nodes according to performance
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• Data hotspots on the ring are handled my multiple nodes

• Rebuilding of replacements is faster

1. When nodes have different processing capabilities and disk space that performance
difference should be taken into account so that all nodes receive load which is proportional
to their performance. With virtual nodes enabled a node can be assigned any number of
tokens. Not the absolute number of tokens of an individual node is relevant it only has
an effect on how much of the ring it occupies on relation to the others.
2. Without using virtual nodes the tokens for each node have to be calculated manually
and assigned to each node. Cassandra also automatically rebalances the ring whenever a
new node joins or a node leaves.
3. When data partitioning was done poorly or the data happens to cluster around a
particular token range the node responsible for that data receives disproportionately much
load. Virtual nodes remedy that because they not only make the individual partitions
smaller but they also make any single note responsible for multiple areas on the ring.
4. When a node goes down and a replacement is brought up. This replacement needs
the data of the node it replaced. If the replication factor is three it needs data from
three different partitions. Without virtual nodes this can come from up to 3 · (3− 1) = 6
different replicas. When using virtual nodes the partitions the same amount of data is
spread across more nodes and thus the replication can transfer data from more nodes
at once. If each node is split into k virtual nodes it can replicate from k times more
replicas.

See figure 3.12 for a visualization.
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Figure 3.12.: Virtual Nodes
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3.7.1. Distributed writes and reads (CAP Theorem)

Cassandra has a masterless architecture; no single node controls any particular piece of
data (Lakshman & Malik, 2010, p. 5)3. A consequence is that a client can run queries
against any node of the cluster. In practice the client determines, either by some heuristic
of proximity/latency or a round-robin algorithm, which node to use. For one query
that particular node becomes the coordinator node; it coordinates the execution and
distribution of that query. First it hashes the partition key of the data to obtain the
token and finds the node responsible for it. By using the replication strategy it can find
out which replicas are responsible for that data as well.
When executing a read query the coordinator asks all replicas4 for the data. When more
than CL.read replicas have answered the client is given an answer. When the replicas
don’t agree on the value of the data the client is sent the newest copy. Once all answers
have come in the replicas with outdated information are sent a message on how to update
their data, this is called a read repair. (DataStax, Inc., 2019c)
When executing a write query the coordinator sends the write request to all responsible
replicas. If a replica is not currently available the coordinator logs the request and retries
it later when the replica is back up - this is called a hinted handoff (Featherston, 2010,
pp. 6, 7). After more than Cl.write replicas have responded that they successfully
completed the write the client is given a successful response. (DataStax, Inc., 2019d)

For an explanation of the consistency levels CL.read and CL.write see section 3.7.1.

In short, the process looks like this:

1. Client sends query to any node

2. That node becomes coordinator

3. Coordinator determines tokens by hashing

4. Coordinator sends write or read requests to all replicas determined by replication
strategy

5. For writing

a) Return success to client when more than CL.write nodes have acknowledged

b) Write hinted handoff to log for nodes that are currently unavailable

3Unless explicitly configured to do so
4A replica is every node responsible for that piece of data - the one determined by hashing as well as

the others determined by replication strategy.
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5. For reading

a) Return newest response when more than CL.read nodes have responed

b) Send read repair to nodes with outdated data

This process is also illustrated by figure 3.13. The client queries node 4 which becomes
the coordinator and then itself queries all replicas (1, 8 and 11). When node 1 answers
the default consistency level of ONE is satisfied and an answer is returned to the client.
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Figure 3.13.: Replication

Tuning Consistency By default writes and reads need to be acknowledged by only a
single replica. Usually data is configured to be replicated over multiple nodes. The result
is that queries to Cassandra are highly available - any particular node can fail and the
request will receive a successful response. This comes at the cost that not all replicas
always have the same data - a lack of consistency.
Because different applications have different requirements of availability and consistency
Cassandra offers several parameters to adjust its alignment on that spectrum.

One of those is the consistency level. As previously mentioned in this section it determines
how many nodes have to acknowledge a request until enough nodes have acknowledged
completion. Consistency level for reading and writing are abbreviated as CL.read and
CL.write respectively.

Cassandra offers these, but not limited to these, options. (DataStax Inc., 2019b)

• ALL replicas
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• QUORUM: A majority of the replicas: half + 1

• THREE replicas

• TWO replicas

• ONE replicas (default)

• ANY: Only writing - At least one replica or a logged hinted handoff if all are
unavailable

In addition to these levels Cassandra also offers others that also take into account how
nodes are distributed into different datacenters.
For each query, but usually an entire client session, the consistency level can be chosen.

The ALL level yields the highest consistency. Only when all replicas have responded the
response is given to the client. That means either all were updated or all were asked for
their current dataset. Thus there is no uncertainty about what the result is - all replicas
must agree. The ANY consistency level is the least consistent. The data does not have to
be fully written to any SSTable, memtable or even commit log of a replica - a simple
hinted handoff on the coordinator is enough. (Featherston, 2010, pp. 6, 7)

Replication Factor Whenever creating a keyspace you have to configure its replication
strategy. Whatever strategy you choose you have to determine how often you want a
piece of data to be replicated. If you go with the lowest possible value of 1 the failure
of any node will inevitably lead to data loss (read and write failures). Increasing the
replication factor means that more nodes can fail while requests can still be properly
responded to - this means increased availability. It will, however, also mean that the
additional replicas can get out of sync, which lowers the consistency. (Lakshman & Malik,
2010, p. 3)

We see that by default Cassandra is highly available and only eventually consistent but it
can be gradually tuned to being highly consistent but more prone to failure. (Featherston,
2010, pp. 2, 3)

3.8. Setup and Configuration

Cassandra is designed to be run in a cluster of multiple machines. That has to be kept in
mind, even when setting up a single instance. That single instance would form a single
node cluster. This makes manual configuration unavoidable - every node needs to know
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how to join the cluster. For the purpose of joining the cluster each node is configured
with a list of seed nodes. When starting up for the first time it asks those nodes about
the state of the ring and the new node is assigned a place on the ring. After joining the
cluster is complete and the distinction of seed nodes is no longer relevant - all nodes are
equally important. When a new node was added it is responsible for a chunk of the data
the others were previously responsible for. They do not remove that, now unnecessary,
data on their own - to do so run nodetool cleanup on each of the old nodes.

A simple but sufficient5 configuration of the first node would look like shown in listing 1.
(DataStax, Inc., 2019i)

# Open socket on this address

listen_address: "192.168.0.2"

# Tell other nodes its reachable on this address

broadcast_address: "3.14.1.59"

seed_provider:

- class_name: org.apache.cassandra.locator.SimpleSeedProvider

parameters:

- seeds "3.14.1.59"

# Enable client communication

start_native_transport: true

Listing 1: Configuration of first node

For the masterless cluster to function all nodes need to be able to reach all other nodes.
This is trivial if all are in the same subnet of the network. Then they can just reach each
other by their IP addresses. When they are in different subnets however they each have
a private (local to their subnet) and public (inter subnet) address. This is very often
the case in public cloud offerings. There are just not enough addresses available to give
every node a public one. Cassandra needs to know two things: 1. On what address to
listen for oncoming TCP connections. That’s what listen address is for. This is the
local/private address. 2. What address to tell other nodes it’s reachable under. This is
set by broadcast address and it is the public address that all other nodes must be able
to reach. Therefore in a local network (with no address translation between the nodes)
listen address and broadcast address are set to the same value.

In order to create a single cluster instance the node has to have its seed set to containing
only its own address. Since it doesn’t need to listen on a public or even private IP this
should, in most cases, be localhost. The first node of a cluster can be thought of as
such a single instance node until others join.

5The other settings can be left at their defaults.
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In order for additional nodes to join the cluster configure them analogous to the first,
changing the address values but keeping the seed list. Upon starting them they will
automatically communicate with the seed and join the cluster.

More configuration Cassandra has many more parameters that we are not going
to mention here. They can be used to adjust everything from performance tuning,
architectural changes or increasing security. To use virtual nodes explained in section 3.7
and give a node more than a single token the num tokens parameter can be used.
(DataStax, Inc., 2019i) In its default configuration Cassandra claims a few gigabytes
of memory. On dedicated Cassandra nodes you would probably want to increase it to
fully utilize the hardware. However for testing purposes you do not want it to consume
a big chunk of your memory. Our experience has shown that Cassandra does not like
being given too little memory and is prone to crashing if that happens. To adjust
how much memory Cassandra uses the MAX HEAP SIZE and HEAP NEWSIZE variables in
/etc/cassandra/casandra-env.sh can bet set. (Carpenter & Hewitt, 2016, p. 281)

Setup Overview Setting up a service in a cluster architecture can be daunting because
it involves many different components that all need to interact with eachother. The
following list gives an overview over the tasks that need to be done:

1. Acquire enough capable nodes. DataStax the main contributor to Cassandra recom-
mends to use at least 3 nodes, 8 cores and 32GB of RAM (Apache Foundation, 2016)
2. Set up a network between the nodes so that each one has a unique IP address and
every node can reach every other node.6

3. Adapt the configuration files like shown above
4. Open the necessary port in the firewall: TCP/7000 for node to node communication
(storage port) and TCP/9042 for client to node communication (native storage port).
5. Start all seed nodes and once they’re online start the other nodes.

When that’s done and all nodes have fully joined the cluster you can interact with the
cluster with the nodetool and cqlsh tools.

3.9. Summary and Conclusion

This chapter gave an overview about what Cassandra is, when to use it and detailed
insights on how to use it and its architecture. It has shown that Cassandra is a complex

6Multiple nodes behind a single NATed public IP is not possible because Cassandra allows only
configuration of the broadcast IP but not the port
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database system with unique benefits compared to other database systems. It solves
a lot of problems that come with big data environments. Due to its uniqueness it has
to be assessed very carefully whether Cassandra is a fit for a certain environment or
not. Although it comes with major benefits and extra features, some expected features
and base assumptions about a database system are different in Cassandra. It could be
seen, that it is a great fit for lots of fast writes environments but comes short in OLTP
environments where traditional RDBMS databases shine. During the work on this chapter
and the learning phase about Cassandra, it showed how detail rich and complex the
solutions this distributed database storage brings with is. To truly understand Cassandra
in all its different settings, possibilities and to be able to setup, run and maintain a
production ready big sized cluster, more reading is needed. Especially the fine details
how a Cluster will react in certain distress situations should be fully understood and can
be assessed further.
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4.1. Introduction

Andreas Fuchs, Alex Schäfer, Cathleen Schmalfuß

Document store databases are one representative of NoSQL databases. They are com-
monly referred to by either document store database or document-oriented database,
more rarely aggregated database is being used. Instead of focusing on relationships the
focus for this type lies on structuring data in more natural or logical ways (Ian, 2019).
In short, it uses “a document-oriented model to store data” ((Ian, 2016)).

4.1.1. Document Oriented Databases explained

Each record is made of a single document, including the record itself and all associated
data (Ian, 2016)(Amazon, 2019). This puts a record into a single logical unit, making
it easier to manage since all related data is kept together at all times - Even in case of
distributed data across multiple servers. This also leads to an increase in performance
since a logical unit can be “read contiguously off disk” ((Ian, 2019)). Another advantage
follows the possible simplification of the application logic. With this way of processing and
storing data, objects can be directly transformed into a document instead of translating
them into SQL queries first (Ian, 2019) (Amazon, 2019). Objects can be stored “as
they are”, with no need to force them into a structure of a static table, especially if
there is only one instance of that object in use. This leads to an overall ease of storing
unstructured data, since document store documents can contain all keys and values as
needed without complex model transformations or adaptions (Ian, 2019). Additionally
changes to the object model can easily be tracked and displayed. All iterations of a
single object instance and their ever changing flexible attributes may be stored without
transformation issues and database table adaptation. Since the document data structures
can vary from document to document (Amazon, 2019), it increases overall flexibility in
the development process and reduces overhead of finding a static structure that fits all
data equally. Document store databases are often described as “designed to store semi
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Figure 4.1.: Ranking of documented oriented databases

structured data” ((Amazon, 2019)), because even though data is less structured than in
a classic relationship model, keys and values still provide some structure, even though an
overall much more adaptable one.

4.1.2. Document Oriented Databases over the Years

A ranking from March 2019 shows the top 11 document store databases in use today (DB-
Engines, 2019). db-engines.com was consulted for Figure 4.1 and Figure 4.2. MongoDB
is still leading on rank 1 of the most popular document oriented databases, same as
it did for the last three years. Figure 4.1 shows that overall only very small changes
happened in the total top 10 in the last three years. RethinkDB moved down to 11 and
Google Cloud Datastore instead made it up to 9. CouchDB and Microsoft Azure Cosmos
DB bested over each other in place 4 and 5. Other than that the document oriented
database market has been very quiet. This proves how a handful of document oriented
database systems already claimed leading roles on the market. Overall not many changes
happened in the ranking over that last three years. The development and establishment
of these databases can therefore be seen as a longer running process. Three years is a
short time frame to retrace the whole market development. To demonstrate how the
top 5 as well as RethinkDB (currently 11) established themselves over a longer period
consider Figure 4.2. It provides insight in the development of the document oriented
database market and the popularity of the leading five products in ranking since 2013
(DB-Engines, 2019).

Ever since 2013 MongoDB has had a leading role. However, the top 3 of today were not as
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Figure 4.2.: Development of the document oriented database market

set back then. Further Figure 4.2 finally provides a bit more insight over the development
of several products over time. CouchDB especially, once second to MongoDB, moved
down to rank 5, while Amazon DynamoDB made a name for itself and claimed that
second rank. Even though RethinkDB was recently overtaken by Microsoft Azure Cosmos
DB it has an astonishing increase in popularity considering its small beginning back in
2013. So in the long run things weren’t as set as they have been over the last three years.
The historic development of the products and especially the features added, which lead
to a sometimes rather steep ascend in popularity, are relevant still.

4.1.3. Comparison relational database management systems
(RDMS)

Before going into details of specific document store databases this chapter will focus
on comparing classical relational database management systems (RDMS) with the
new concept of document store databases. This will provide a closer insight into the
structure and working of document store databases as well as its general advantages and
disadvantages not only in direct comparison.

As the name suggests RDMS focus primarily on relationships. Properties of a data set
are spread across different tables and linked using primary and foreign keys to reference
and link information. This means a reference - mostly given as a foreign key pointing
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to the primary key of the needed information entry - can be reused multiple times in
different tables across the database. Master data may be used and reused as often as
needed, a simple example of a list providing such master data would be a list hosting all
relevant postal codes for an application dealing with addresses or shipping in an area.
This also means that the data related to a set is spread across the database, needing to
be retrieved via the foreign key from different tables. To go over the main differences
between such a table and relationship based setup and the document oriented approach,
consider the following points.

Tables

For RDMS tables are in the centre of the system. Different tables may be linked to
describe relationships and reference data. Strictly speaking a single record is described
as a row in a table, additional information may be supplied from a different table. All
records are bound to this static structure and the columns given in this record table.
Therefore records of the same table need to share the same columns to describe their
properties.

In the document store based system a single document describes all data related to this
entry. No reference to other documents are necessarily made. Seeing that a document
always has an unique key to identify it, relations can be technically set up.

Depending on the focus, either the data as such or the common relationships data entries
have, a document store or a RDMS brings advantages. It is far easier to group entries in
a table sorting by a foreign key reference to for example collect all entries linked to a
specific postal code. It is however easier using a document store database to store data
which not necessarily shares the exact same properties, therefore cannot be mapped into
a strict column based format.

Schemas

As the table based design suggests the RDMS is very strict. The schema how columns
are used to describe an entry and what data needs to be gathered from another table
must be known from the beginning. There is no flexible adaptation depending on the
data provided. A record either has all the properties asked for by the schema or null
values may be inserted, leading to the question whether the information was unknown,
missing or not provided due to an error.

The document store based system can manage documents that differ. This means
two entries do not necessarily have to have the same structure or even data attributes
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(Amazon, 2019)(Objelean, 2019). A common example is a web form where a user can
provide some of their details optionally. A RDMS entry would have columns for every
property, leaving fields empty if the information is not provided. A document on the
other hand stores only the information given.

Advantages depend on the use case scenario. In some cases, especially towards the end
of development when a fixed data schema has been agreed on, the very conventional
approach of using a SQL database may work just fine. However, especially during
development of an application, when data processed is still being explored and especially
the difference of data sets (objects) is key to understanding it, a document store may
offer more flexibility.

Scalability

Relationship databases scale well vertically, the addition of memory or storage to the
machine increases the performance. However vertical scaling has a limit, which leads to the
need to scale horizontally to further increase performance. The horizontal implementation
of RDMS is a complex process that asks for redundancy and different strategies to keep
data across the horizontal landscape consistent.

A document based system is much easier to spread horizontally (Ian, 2016)(Objelean,
2019). Each entry is in itself complete and can be stored across a large landscape since no
additional information is linked or needs to be gathered from a possible far away source.
The process of storing data across such a landscape is called “sharding” (Ian, 2016).

Relationships

Relationships are the central idea of RDMS while tables are the central storage form
to implement them. The idea is to associate data entries with different ones to capture
relationships and common links. Again, remember the example of the reusable postal
code column from section 4.1.3.

A document store based system does not provide means to implement this idea. Here the
central idea is to keep all data together that is needed to describe a record. If relations
are indeed still needed, this needs to happen at application level (Ian, 2016) using the
unique keys that identify the documents (records).
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Querying

Relational databases tend to use SQL (structured query language) to query their tables
and records. Document store databases may support SQL statements, but most are
queried with different languages “such as XQuery, XSLT, SPARQL, Java, JavaScript,
Python” ((Ian, 2016)) for example.

There are no strict advantages over what query language is being used. However, one
might consider the general performance of retrieving records from the database or the
complexity of the query statements needed to do common actions (read, write, update,
delete) against the specific database with its specific query language.

4.2. Couchbase

Andreas Fuchs, Alex Schäfer, Cathleen Schmalfuß

Some of the general key properties of Couchbase, a document store database, are briefly
outlined in the introduction. Later sections will take a closer look at specific characteristics
and properties. The context of the CAP theorem will be addressed, as well as relevant
characteristics and how they are realized in Couchbase Server. Overall this chapter will
give the reader a closer understanding of the ideas behind Couchbase. A short paragraph
on the history will provide some insight in the development of this NoSQL database. To
cross reference the development steps with the increase of popularity of Couchbase, see
Figure 4.2 from this chapter’s introduction.

As a document store database Couchbase uses JSON documents to represent data as
items (Couchbase, 2019b) (Objelean, 2019). As a common way to represent objects,
especially in web development, the JSON format makes it easy to store and load data
from a Couchbase database. The exact mechanics behind the data structures and the
inclusion in buckets will be discussed as part of the core components in section 4.2.3.

Couchbase SDKs are available for most common programming languages (e.g. Java, .NET,
Node.js, Python and more) and can be downloaded through the package management
system of the respective development environment (e.g. Maven, Nuget, npm, pip and
more) (Couchbase, 2019a) (Objelean, 2019). Thereby a widespread support is given.
More information on SDKs and the usage follows in section 4.2.8 of this chapter. Other
core characteristics of the Couchbase DB are: its memory-first architecture, an elastic
scalability and an architecture based on buckets (which add redundancy and thereby
persistence) (Couchbase, 2019a). The core components as well as the architecture itself
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will be described more closely in the following sections.

4.2.1. Couchbase History

Couchbase DB is a NoSQL document store database that originated in the merge of
Membase and CouchOne back in 2011 (Couchbase, 2019a). Membase was build for
applications that did not need SQL necessarily, but the durability, replication and data
management that RDMS usually provide (Ingenthron, 2014). In the beginning the
durability was achieved by MySQL in the background, storing memcached information
on disk (Popescu & Bacalu, 2010). After the merge of CouchDB this responsibility was
given to CouchDB implementation, resulting in a new product: Couchbase.

It started out as a “pure key-value database” ((Couchbase, 2019b)) till it 2012 became a
JSON document-oriented database. 2015 SQL-like queries were introduced as well as
multidimensional scaling (Couchbase, 2019b). Ever since then, the database was adapted
and extended, introducing features like Full-Text search (2017) and Analytics (2018)
(Couchbase, 2019b).

4.2.2. Architecture

Before looking at the core components of Couchbase let us take a quick overview of the
basic concept behind the architecture of Couchbase and what makes it distinct from
other databases.
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Figure 4.3.: Couchbase’s sharding Architecture across its Cluster Nodes

Couchbase was designed with a highly distributed architecture from the ground up,
which makes it similar to other NoSQL databases. While it could be used on a single
machine, the typical setting for Couchbase is a server cluster. In this environment the
data is stored by sharding it evenly across multiple machines. The system defines exactly
1024 partitions (not configurable) and (evenly) assigns them to the available nodes in
the cluster. Once a document needs to be stored, the documentId - which is a unique
identifier for every document - gets hashed to determine which of the partitions the data
is assigned to. Figure 4.3 illustrates this sharding process. Once the data is assigned,
the document will be held in that partition. If nodes are added or removed from the
cluster, Couchbase will reassign the partitions among all the nodes to rebalance itself. At
any given time the nodes themselves are responsible for their assigned partitions. This
leads to another property of Couchbase, which is that all the nodes are completely equal.
Every node has two primary processes. The Data Manager is responsible for handling the
actual data of the node’s partitions while the Cluster Manager deals with the intra-node
communication. Those are the reasons why Couchbase is excellent in scaling horizontally.
(Objelean, 2019)
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To make sure that no data is lost when a node has a failure, a replication concept is
necessary. Couchbase achieves this by replicating all the partitions and distributing them
among the cluster, while making sure that the replica partition is never on the same
physical server. This way, once a node fails the cluster will determine the location of the
replica and make it the ‘active’ partition.

4.2.3. Core Components

This section will focus on some core components of CouchbaseDB. It will provide insight
into the mechanics of the database and how the document based database concepts
are implemented. To do so the low level concepts of buckets, data schemas and data
limits are discussed. This will be the first step to understand availability, scaling and
performance of a Couchbase Server infrastructure.

Keys and Metadata

The items, stored in documents, are made of keys and values (Couchbase, 2019g), where
a key must be unique within the bucket. In case of nested objects (or attributes) the
value can be regarded as an “embedded document” ((Couchbase, 2019g)), consisting of
key-value pairs or further nested documents (Couchbase, 2019g). Along with the data
itself metadata is stored by the server (Couchbase, 2019g) (Objelean, 2019) or in case of
extended attributes possibly by the application (Couchbase, 2019g). The server metadata
contains a unique ID, a revision or sequence number, an expiration time, flags and the
document type(Couchbase, 2019g). The unique ID, also often simply called key, has the
same purpose as the primary key in SQL. The revision or sequence number helps identify
the number of mutations of a document, in case of update conflicts this helps find the
newest or most current version of a document. The expiration time gives the document a
time to live (TTL). This may be either set on document level or bucket level (Couchbase,
2019d). It uniquely identifies any document within the bucket. If the expiration times
differ, the bucket TTL “wins” if the item TTL is longer. If it is shorter, the bucket TTL
is left unchanged. Documents without a TTL are automatically given the bucket TTL if
it is set (Couchbase, 2019h). Flags and type metadata are used to identify the type of
data as well as the type of the saved value. Extended attributes can either be system set
or application set. Server internal extended metadata can “optionally be written and read
by user applications” ((Couchbase, 2019g)), extended attributes set by the application
however can only be accessed by the application which created it (Couchbase, 2019i).
All server internal metadata is kept in RAM, which leads to “100% memory resident
indexes” ((Couchbase, 2019a)) and provides extremely fast loading (performance).

There are some size limits for the documentId (“key”), the data (“values”) and the
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metadata. The key size is limited to 250 bytes. The value plus the user extended
attributes together can not extend 20 MiB. The system extended attributes have a
maximum size of 1 MiB. Other fixed metadata such as the id, rev, expiration, flags and
type have no limitation (Couchbase, 2019g).

Document Store

Documents in Couchbase DB are stored in JSON (Objelean, 2019) or binary format
(Couchbase, 2019g). Any document can be accessed using its unique key. JSON documents
can further be parsed, indexed and queried. Binary format can only be retrieved by its
key (Couchbase, 2019g). The general advantage of storing data in document form has
already been discussed. In comparison to RDMS, object schemas used in an application
can be applied directly as the schema for the document in the database.

This structure also “allows that data [can] be indexed and queried using views” ((Objelean,
2019)). Entries can be found using a JavaScript-based query engine which is provided by
Couchbase Server. There are two main document design approaches to be considered. The
first approach is storing a small number of rich documents. This leads to “fewer relations
between independent objects” (Couchbase, 2019l) which in turn increases scalability. Also
it is possible to group properties, typically accessed at the same time, increasing atomicity
of operations. This is always a good idea since Couchbase guarantees that the ACID
fundamentals are given for “all operations that address a single document” (Couchbase,
2019l). The other design approach may be a large number of simple documents which
possibly hold relations to each other. This is only feasible if the access-pattern is
predictable and for some reason (e.g. network speed) the data-size has to be kept
small.

The data model of Couchbase holds several advantages. For instance scalability is
increased since replications and edits do not affect other documents other than the one
replicated/ edited. There is no need to access or touch anything else in the database.
Also the latency is kept low since no complex inter-node coordination has to be performed
and all connections are minimized (Couchbase, 2019l). The performance of Couchbase
is further increased by the Sub Document API which lets the user access only parts of
the inner components of a JSON document. The special Sub Doucment API can run a
query against a specific path to either read or write (update) the attribute or document
there (Couchbase, 2019e). The API was first introduced for Couchbase Server 4.5 and
has been available all the way to the current version 6.0 (Couchbase, 2019e).
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Data Buckets

To keep connected data records together, Couchbase Server implements buckets. Buckets
are “isolated, virtual containers” ((Objelean, 2019)). On creation, they are assigned an
innumerable name by which the bucket is accessed in the future (Couchbase, 2019k).
No item can be saved before a bucket exists for it (Couchbase, 2019d). Buckets can be
replicated leading to redundancy and failure copies (Couchbase, 2019a). There are three
types of buckets provided, differing in their way of storing data: Couchbase buckets,
Ephemeral buckets and Memcached buckets (Couchbase, 2019d).

Couchbase Buckets store data both persistently on disk and in memory. High availability
is given since data is automatically replicated using the Database Change Protocol
(DCP) and scalability accomplished through Cross Data Center Replication (XDCR)
“dynamically scaled across multiple clusters” (Couchbase, 2019c). If the memory capacity
to store data there runs out there are two strategies to eject items from memory. Either
value-only, meaning only the value is ejected and the key and metadata kept in RAM,
or a full removal strategy. Value-only provides less freed room in memory but will keep
up good performance since data can easily be accessed on disk by its unique key. A full
removal will lead to more freed memory but less performance since the disk needs to be
queried for every request (Couchbase, 2019c).

Ephemeral buckets are used when persistence is not required. Data is only kept in memory,
leading to a highly-consistent in-memory performance. This can be seen especially in case
of a rebalance (when a node is added or removed and the system needs to redistribute)
and on restart (Couchbase, 2019c). If this bucket runs out of available memory there
are again two strategies: Either it is generally forbidden to add more data than there is
room available, which leads to a fail or data is ejected, which leads to a data loss since
no data is saved persistently on disk (Couchbase, 2019c).

Memcached Buckets cache frequently used data and thereby reduce the number of queries.
They provide a directly addressable, distributed, in memory key-value cache (Couchbase,
2019c). As in-memory suggests, no data is stored on any disk, everything is kept in RAM.
If the RAM quota is exceeded data will be ejected and lost.

Couchbase and Ephemeral Buckets are the most commonly used, they “both provide a
highly available, dynamically reconfigurable, distributed data-store” (Couchbase, 2019c).
Persistence for Couchbase Buckets is achieved asychronously between memory and disk.
Ephemeral Buckets are only persistent in RAM. Replication, using both DCP and XDCR,
is both in Couchbase Buckets and Ephemeral Buckets configurable over a number of
servers. For Couchbase Buckets a host server failure leads to the promotion of the replica
server which guarantees high availability. For Ephemeral Buckets, the ones which eject
data are not permitted to do XDCR though they can be the target of XDCR operations
(Couchbase, 2019c). Rebalance is handled in the same way for Couchbase and Ephemeral
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Buckets. As buckets and nodes are dynamically added or removed, the buckets and data
are distributed evenly across all available nodes (Couchbase, 2019c).

To increase performance further there are three modes of compression available for
Couchbase Sever and data passed through it. This leads to more efficient RAM and
disk space usage, reduced need of network bandwidth and higher consumption of CPU
(Couchbase, 2019f). Compression is provided by the open-source library “Sappy” and
is works specific to the clients capabilities. The compression mode can be established
by the user per bucket (Couchbase, 2019f). The available modes are: off, passive and
active.

Off is recommend for clients which will not benefit from compression and if bandwidth
usage is no issue. If data is received compressed it will be decompressed to be stored in
memory and recompressed to be stored on disk. It is always returned in uncompressed
form. Memcached buckets only operate on this mode(Couchbase, 2019f).

the passive mode stores data compressed both in memory and on disk. Data is returned
uncompressed unless requested otherwise. Then, data can be returned compressed as
well. It is the job of the client to know if it can process compressed data and request
accordingly. If uncompressed data is received however, it will only be compressed for
disk storage, not in memory. It is then returned uncompressed as well. Advantage of
this mode are the reduced memory usage and bandwidth and the reduced CPU usage for
the clients that do not required a compressed format (Couchbase, 2019f).

Active mode stores data compressed in memory and on disk no matter what the client
handed in. If a client does not support receiving compressed format, it is decompressed
before sending it out. This maximizes memory space and network usage. At the cost
of wasting CPU time on compression for a client that will need decompressed data as
return data (Couchbase, 2019f).

VBuckets

vBuckets, sometimes called “shards”, are “defined as owner of a subset of the key
space of a Couchbase cluster” (Objelean, 2019) (Couchbase, 2019m). They are used
to implement both Couchbase and Ephermal buckets (Couchbase, 2019m) and have
organizational functions such as the distribution of data and replication on more than
one node (Objelean, 2019) (Couchbase, 2019m). Replications are distributed across the
cluster. Write operations can only be performed on active buckets, read requests are
mostly performed on the active vBucket (Couchbase, 2019m). Per bucket, 1024 vBuckets
(or 64 on MacOS) are created (Couchbase, 2019m). In case of a replication of said bucket
all 1024 (or 64) vBuckets are copied (Couchbase, 2019m), leading to 2048 vBuckets
stored. Data items are stored evenly across all vBuckets.
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To locate and access an item the document key is consulted. The documents all have
unique identifiers (the key), which are associated with a specific vBucket using a hashing
function mapping (Objelean, 2019) (a CRC32 hashing algorithm (Couchbase, 2019m)).
Using this algorithm and the id, the bucket number can be calculated. This number is
used to to find the server that “hosts” the vBucket using a map to determine the correct
server node (Couchbase, 2019m). The mapping of vBucket to individual node is handled
by the Cluster Manager (Couchbase, 2019m). After the node has been identified the
operation can be performed directly on this server node.

In case of a cluster-configuration change (addition or removal of nodes) first the replica
buckets are promoted if applicable. It is applicable in case the active buckets are lost
due to a failure or deletion. After that, primary and replica buckets are redistributed
across the newly available buckets. Last the Cluster Manager updates the mapping and
sends it out to all cluster-partitions (Couchbase, 2019m).

4.2.4. Querying

N1QL

Couchbase has its own query language called N1QL (pronounced “nickel”) (Couchbase,
2018). Even though Couchbase Server is a NoSQL database, N1QL is very similar to
SQL in syntax and use. However, as the information can be nested within documents
N1QL features some additions that are not needed in SQL. The basic clauses in N1QL
are:

• SELECT

• FROM

• LET

• WHERE

• GROUP BY

• ORDER BY

• LIMIT

• OFFSET
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The expression used in a SELECT statement can be either literal values, calculations or
properties from documents. If the properties are specified in the statement, the result
will contain only the given properties from matching documents. It is possible to use
a wildcard selector (*), in which case the query returns each matching document in its
entirety. The id that is assigned to each document by Couchbase Server is not included
when retrieving the complete document. To get this information, the META() function
needs to be utilized. It returns a document that contains metadata about the document
it belongs to. Its properties like the documentId can be accessed via a “dot” notation:
META().id (Ostrovsky, Haji, & Rodenski, 2015).

The FROM statement is where the source to retrieve data from is defined. In SQL this is
the name of the database. Similarly, in N1QL the name of the bucket to search in is given.
However, this is not the only type of source that can be stated. It is possible to query only
from certain properties (or even properties of properties) if necessary. Again, this utilizes
the simple “dot” notation (Ostrovsky et al., 2015). An example of this would be: SELECT
* FROM userdata.user.role. This query retrieves all properties from the role property
of the user property from documents in the userdata bucket. This allows developers to
build more flexible queries when dealing with heavily nested structures. Another option
to define the source is to use a subquery. This means that within the FROM clause,
another query is being executed, the result of which is used as the source for the outer
query (Couchbase, 2018). Just like in SQL, N1QL allows for joins of different sources.
The JOIN ... ON KEYS clause, which is used to execute joins, takes a property from
one bucket which is then used as a key in another bucket. For example SELECT * FROM

books AS b JOIN authors AS a ON KEYS b.author; returns all documents from the
“books” bucket with additional info from the “authors” bucket, looked up in authors
with author property in books.

The LET statement makes it possible to define variables to use in other parts of the
query. The value of a variable can be the result of a subquery. The WHERE clause
allows for filtering of documents for specific characteristics. In it, developers can execute
calculations and create boolean expressions by comparing values or combining boolean
values with AND or OR clauses (Couchbase, 2018). To group resulting documents
together, the GROUP BY clause is used. Given a property, it aggregates certain values
according to the property. The ORDER BY clause orders the results by a given property
(Ostrovsky et al., 2015). To reduce the number of documents shown in the result, a
maximum number can be set using the LIMIT clause. The given number corresponds to
the amount of result documents. The OFFSET clause is used to not start with the first
document, but with a later one. If the Limit is 1 and the Offset is 1 as well, only the
second document from the entire result will be returned (Vohra, 2015).
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Views

Couchbase offers another way to retrieve data: views. They allow developers to create
more complex queries by writing their own functions and perform calculations on the
data in the same step. Views use the MapReduce programming model to enable them
to process documents across a cluster. For each view a map function is defined, which
is applied to every document in the bucket and takes care of the initial filtering and
processing of the documents (Ostrovsky et al., 2015). The result of the map function is
an index, which is a list of key-value pairs. This index is then stored on the disk and is
updated when the documents change (Couchbase, 2019n). Each view can also have a
reduce function, which performs aggregations on the data. Couchbase Server provides
commonly used reduce functions (e.g. basic statistical functions) (Ostrovsky et al., 2015).
Once the map and reduce functions are defined, the view can be queried. Every time a
view is queried, Couchbase Server builds a new index by default, to make sure that all
changes that were made since the last query are in the index. As building an index takes
up a lot of resources, developers can decide depending on their application wether or not
a new index should be built for every view queried (Couchbase, 2019n).

4.2.5. Performance

When deciding which database to use for an application, it is important to consider its
performance under high load. The instantiation of a Couchbase bucket is faster than of
an SQL database, but slower than other NoSQL databases. When tasked with executing
a large number of reading operations, Couchbase proves to be more efficient than other
databases, handling even large amounts of operations very fast. The same result applies
to delete operations (Li & Manoharan, 2013). As for loading data into the database,
Tang and Fan ((Tang & Fan, 2016)) showed that Couchbase performed inserts faster
than Cassandra and HBase, but slightly slower than Redis and MongoDB. Additionally,
they state that the performance decreases in comparison to other NoSQL databases with
an increasing number of documents to be inserted.

4.2.6. Monitoring

To setup and maintain your Couchbase database, the Couchbase Web Administration
Console offers a lot of information and direct interaction with your database. Part of
that is the monitoring section, which provides details on resources used by the cluster,
each node or bucket. The level of detail one wishes to see is adjustable. Additionally,
the Web Administration Console not only shows numbers, but visualizes them as graphs
so they are easier to grasp (Brown, 2012). The overview of the entire cluster shows
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Figure 4.4.: Monitoring the operations per second

information on resource usage across buckets, e.g. RAM available for the cluster, RAM
used by buckets and RAM allocated by buckets. Similar information is given for the
disk space that is used. In addition, graphs provide insight about the operations and
disk fetches per second, which are valuable to keep an eye on the overall condition of the
database and the application it is used for. (Ostrovsky et al., 2015).

Figure 4.4 shows two spikes in operations per second in the last hour, which timestamps
correspond to the queries executed before.
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Figure 4.5.: Monitoring metrics of an individual bucket in Couchbase

Figure 4.5 shows all the graphs available for individual buckets. All in all, over forty
metrics can be viewed and used to assess the health and performance of the system.
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4.2.7. CAP Theorem

From a CAP-Theorem perspective Couchbase can be operated as a CP or CA system.
By default it will act as CP system. When a Node fails some data will be temporarily
unavailable for writes until the replica is set to active. However, reads will be processed
regularly by the replicas available in the cluster. If needed, it can be tuned to act as a
CA system for example through auto-failover. But this is only half the story and only
applies if Couchbase is run in a single cluster setting. With a multiple cluster setting,
also known as Cross Data Center Replication (XDCR), it will act as AP system. Since in
this setting any Cluster can be written to, problems arise when the same data is modified
from different locations. In this case Couchbase provides different configurations for
conflict resolution (for example through timestamp or revision ID), eventually leading to
consistency between multiple clusters. (Biyikoglu, 2014)

4.2.8. SDK

To use Couchbase productively in a development environment this last section shall
discuss the available software development kit and give some examples on how to use it
to perform basic CRUD operations on the cluster’s data.

First of all, Couchbase offers SDKs for several popular programming languages and
runtime environments inlcuding C, Go, Java, .NET, Node.js, PHP and Python. (Couch-
base, 2019j) Since it would be out of scope to give examples for all of them, this section
will limit the examples to the Node.js SDK, but the information given will be easily
transferable to other languages as well.

First, a connection to the Couchbase Cluster needs to be established. Afterwards,
authentication is necessary to select the desired bucket. Once there is a bucket object it
can be used to send queries. The described steps can be seen in Listing 2.

const cluster = new couchbase.Cluster('localhost:8091');

cluster.authenticate('user', 'password');

const bucket = cluster.openBucket('demo-bucket');

Listing 2: Connect to Couchbase

Two different kinds of interacting with the data shall be looked at. The first option is to
use the core operations upsert(docId, document), insert(docId, document), replace(docId,
document), get(docId) and remove(docId) to execute the basic CRUD operations. Insert
will only insert the document if the docId isn’t found, replace will only replace the
document if the docId is found and upsert will always replace the document (ignoring
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if the docId existed or not). The second option is to use N1QL queries described in
section 4.2.4 to query the desired data. Examples for both options can be seen in Listing
3 and Listing 4.

// Remove and Get use the same syntax

bucket.get('uniqueDocId', function(err, res) {

if (err) {

console.log('operation failed', err);

return;

}

//res contains the document

console.log('success!', res);

});

// Replace, Insert and Upsert use the same syntax

bucket.insert('unqiueDocId', {some:'value'}, function(err, res) {

if (err) {

console.log('operation failed', err);

return;

}

console.log('success!', res);

});

Listing 3: CRUD Operations

const q = couchbase.N1qlQuery.fromString('SELECT airportname as n

FROM `travel-sample` where type="airport" LIMIT 4');

// Using arrow functions to iterate through the result set

bucket.query(q, (err, rows) => rows.forEach((row) => console.log(row)));

Listing 4: Query Data with N1QL

It is important to note that while in earlier versions of the SDK it was not possible to
stream the results of N1QL queries row by row (and instead had to wait for the complete
result set) recent versions do not have this limitation anymore.

It should be clear that the presented examples are far from showing all of the offered
capabilties of the Couchbase SDK and merely offer an easy introduction. To explore
more of its capabilities, like MapReduce Views or Concurrent Document Mutations, the
Couchbase Documentation is an excellent place to start.
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4.2.9. Conclusion

To sum it all up there are several key takeaways from this research into Couchbase,
its mechanics and its take on the CAP theorem. High performance in Couchbase is
achieved due to the partitioning into small vBuckets, compressed data transmission and
in memory strategies for at least the most important metadata (unique documentId). In
terms of the CAP-Theorem the decision whether Couchbase is rather AP (Availability
and Partition Tolerance) or CP (Consistency and Partition Tolerance) depends strongly
on the cluster setup. What can be said, especially in comparison to relational databases,
is that Couchbase (same as most document oriented databases) scales well horizontally.
A reason for that is the vBucket partitioning and the equality of nodes.

Use Cases that make Couchbase a good database choice are cases of large amounts of
unstructured data. Due to the not fixed schema, Couchbase can work with changing
requirements of application object structure or general data schema. Another scenario
where Couchbase stands out against other document oriented databases are performance
scenarios.

This chapter gave you a broad overview of Couchbase, its components and its classification
within the CAP theorem. Other very important aspects of modern databases could not
be covered however. The aspects security and user permission management were not
discussed and are to be researched further in the future.

4.3. RethinkDB

Anne Born, Dorian Czichotzki

4.3.1. Introduction

In today’s data-driven world, the availability of information in real-time becomes more
and more important. Many applications rely on an analysis and delivery of data in
a time-frame that is considered as immediate by the user. Be it multi-player games,
real-time analytics or connected devices in an IoT infrastructure (Wingerath, 2017). Data
should not only be delivered quickly but also proactively, focusing more on a push-based
architecture, giving the responsibility to keep the client informed to the server, instead
of the conventional pull-based database were the client has to request information each
time it is of interest. One kind of technology, implementing this immediate handling
of information are so called real-time databases, which are discussed in this chapter by
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reference to RethinkDB, an example for such a push-based database. The chapter is
structured as follows.

First, an introduction to real-time databases in general is provided and a concrete
definition of the term in the context of RethinkDB is given. The following sections then
discusses the real-time database RethinkDB in great detail, providing information on the
architecture, use-cases it is suited for, and most importantly where the technology could
be placed in the CAP-Theorem.

4.3.2. Real-time Databases

Like many terms in the IT, real-time databases have an abundance of different definitions.
Some overlapping to a great extend, others having nearly no intersection at all. This
makes for a need to introduce some of the most common definitions with the goal
of establishing a precise interpretation of the term in the context of this book and -
particularly - this chapter.

One of the first indications of the term real-time database was within a special issue of the
ACM SIGMOD Record on Real-Time Database Systems in March 1988 (Eich, 1988). In
an article of this journal called ”Issues and Approaches to Design of Real-Time Database
Systems” Mukesh Singhal defined the use-case for real-time databases as ”applications
which have severe performance constraints such as fast response time and continued
operation in the face of catastrophic failures” (Singhal, 1988, p. 1). He further mentions
timing constraints as a direct derivation of the use-cases mentioned above, laying a
fundamental basis for one of the most common definitions of said technology.

This definition (referring to real-time databases as databases that fulfil time-constraints
and must meet certain deadlines), also probably the most popular one, is not the one
used in the context of RethinkDB.

Instead, the definition used in this book is based on a medium article by Wolfram
Wingerath (Wingerath, 2017) who claims that ”in recent years, people have come to
expect reactivity from their applications, i.e. they assume that changes made by other
users are immediately reflected in the interfaces they are using” (Wingerath, 2017).
From this statement it can already be derived that he defines the use-cases for real-time
databases differently from Singhal. Instead of applications that need fast response time
for security reasons, like applications for power-plants or hospitals, he defines a general
demand for reactive applications for the sole reason of improved user experience. However,
similarly to Singhal, Wingerath also sees a need for new technology besides conventional
databases. Conventional databases being pull-based applications that only represent the
state of the system at a single point in time. As an alternative to those databases he defines
real-time databases as technology that facilitates the push-based handling of changes,
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”taking view maintenance out of the application layer” (Wingerath, 2017). A real-time
databases thus must provide some functionality for clients to ’subscribe’ to certain events
(changes), receiving updates when the event is triggered. This subscription-feature’ is
what he calls ’real-time queries’.

Real-time queries can fall into one of two different categories:

• Self maintaining queries

• Event stream queries

The former delivers not only the information that something has changed but also the
old and new value. This of course only works if the query is executed again each time
a change took place. The latter type of queries only provides the information that a
change took place without any more details.

Both queries are push based, pushing information to the client.

Summarised, real-time databases, as defined in this book, are databases that facilitate a
push-based method instead of only allowing pull-based query execution. This makes the
development of reactive applications much more feasible, since it allows for data updates
in a publish/subscribe-like manner.

4.3.3. RethinkDB

After giving an introduction to real-time databases as defined in this book, the document-
based database RethinkDB is introduced and discussed in great detail. In order to
understand not only the database itself but also its place in the CAP-Theorem this
chapter is structured in the following sections: Firstly this section will provide an
overview over RethinkDB and its core features, next a short section on the history of
the database gives some more insight into the story of RethinkDB and its community,
then the proprietary query language ReQL is introduced and explained briefly. Finally
the architecture that this database is based on is outlined, including the distribution of
RethinkDB over multiple nodes, the functioning of query executions and the storing of
data.

Most of the information displayed in this chapter is from the official RethinkDB website
(“RethinkDB”, 2019).RethinkDB defines itself as ”the open-source database for the

real-time web” (“RethinkDB”, 2019).
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From this description it is already possible to derive two of the most important features
of the database project. The first being that it is ’open-source’ meaning that its source
code is publicly available1. RethinkDB itself is developed and enhanced by a combination
of core team developers and database experts as well as over 100000 other contributors
from the RethinkDB community, using the open-source aspect to provide their knowledge
to the project.

The second feature that the RethinkDB project uses frequently to describe itself is being
a database ’for the real-time web’. This means, that RethinkDB falls exactly in the
definition of real-time databases established in subsection 4.3.2, providing a function
called ”changefeeds” (see section 4.3.3) that is push-based and thus automatically updates
the client in case of changes.

This feature is already a pretty unique characteristic of RethinkDB. Another one is the
fact that the ambitious project was written from the ground up in C++, not relying on
and extending existing database implementations. This approach of creating something
completely new and “rethinking” databases also lead to the development of a proprietary
querying language, that is discussed in section 4.3.3.

History

RethinkDB is originally the product of the eponymous company founded in 2009 with
the goal to ”bring a breath of fresh air to the database world” (Akhmechet, 2009). At
this point the database was not open-source, but also not released as a production ready
version yet. With version 1.2 released in November 2012, the company first decided to
open-source their project (Team, 2012).

After three more years of development in 2015, RethinkDB 2.0 was released and with
it the first production ready version of the real-time database (Paul, 2015). One year
later, however, the company was shut down, terminating the official support for the
production versions that was offered until then (Akhmechet, 2016). In the blog article
announcing the shut down of the company, it was also signalised that the RethinkDB
team plans on continuing the development of their product with an open-source continuity
plan, keeping it available under an open-source license. Due to this continuous effort
of former RethinkDB employees and people from the community to ”transition it to a
community-driven endeavour” (Glukhovsky, 2017), the source-code was purchased by
the Cloud Native Computing Foundation in 2017, who published it under the Apache
License 2.0.

As of today the RethinkB project is extended by a large open-source community with

1https://github.com/rethinkdb/rethinkdb
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version 2.3 being the latest release.

ReQL

As mentioned previously, one of the main features of RethinkDB is its powerful, pro-
prietary query language called ReQL. Since this language is the base of all interaction
between the client and the server (the database), it will be discussed in detail in the
following sections, explaining its core attributes, the supported data-types and providing
examples for different functionalities (“Introduction to ReQL”, 2019).

Data Types To facilitate a deeper understanding of ReQLs mechanics, this section
gives an insight into the different data types that are supported by the querying language.
In the official documentation, RethinkDB distinguishes two main categories (“ReQL data
types”, 2019):

• Basic data types

• RethinkDB-specific data types

Each of the aforementioned categories is explained briefly.

Basic data types This category includes the data types supported by nearly every
programming or query language.

• Numbers

– This data type includes any real number. Internally values of this type are
represented as double precision floating point numbers. This leads to a size of
64 bits.

– allowed (examples): 2, 5.8276, -13.4

– not allowed: infinity, NaN

• Strings

– The data type of string is used the same way it is commonly used in other
query languages as well. The encoding used by ReQL is UTF-8, which is why
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any valid UTF-8 string is also a valid ReQL string. This includes the usage of
the null code point (U+0000).

• Booleans

– A boolean can attain the values true or false.

• Null

– Nearly every programming language has a data type similar to Null, however
the naming may be different from language to language. Since ReQL can be
embedded into many different programming languages (see 4.3.3) it might
be called something different from Null (e.g.: nil or none). It is important
to mention that Null does not equal the number zero (0), the empty set ()
or a string with a length of zero (””). Instead Null is used to emphasise the
absence of a value. For example the parent of a root node could be Null, since
it does not exist.

• Objects

– Since RethinkDB belongs to the category of document stores and it more
specifically is designed to store JSON documents, any valid JSON object
is also a valid object in ReQL. This includes but is not limited to simple
key-value pairs (name: ”Harry Potter”) or nested objects.

• Arrays

– Equally to the documents mentioned above, the array data type of ReQL is
also based on JSON arrays, meaning that any valid JSON array is also a valid
ReQL array ([1, 2, 3] [] [name: ’Harry’, age: 23, wizard: ’Dumbledore’, age:
112]). The maximum number of elements inside an array can be changed at
runtime, the default, however, is 100000. But RethinkDBs internal handling
of arrays makes them inefficient at large sizes

RethinkDB-specific data types Data types of this category are specific to the func-
tioning of RethinkDB and ReQL. They are not supposed to be used as actual data but
instead are either what RethinkDB uses internally to store data or as return values to
queries. An exception to this are the so-called ’pseudo types’. Those can be used as
actual data types for values defined by the user, but are specific to RethinkDB in a way
that they are not commonly implemented in most programming languages.

• Databases
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– This data type describes RethinkDB databases. When using the ’.db’ oper-
ation, this is the return value. A database holds tables and administrative
information.

• Tables

– This data type describes RethinkDB tables. They can be used as selectors.
Additionally documents can be added, updated or deleted making tables
writable.

• Streams

– Similar to the aforementioned arrays, streams are lists. However, in order to
make working with large result sets more feasible a Stream is represented by a
cursor that points to the result set. This means, that instead of retrieving the
entire result at once (like an array) a loop is employed to only retrieve one
result set at a time, making it more performant. Another difference between
streams and arrays is that the former is read-only and thus can not be changed.
This limits the chainability of commands that return a stream.

• Selections

– Selections are a subset of the table data type. Many table operations (for
example filter and get) return a selection. Selections exist as a counter-
part to three different data types: Selection<Object>, Selection<Arrays>
and Selection<Stream>. Due to the chainability of ReQL commands the
Selections are writable and can be passed to other ReQL operations

• Pseudotypes

– As mentioned previously the pseudotypes form an exception to the other
RethinkDB-specific data types since they can be used with user data similarly
to the basic types. Generally they are either special cases of other types or a
composition of multiple other types. The pseudotypes include binary objects,
times and geometry data types.

ReQL provides its users with the ’typeOf’ command, returning the data type of operations
(see Listing 5).

This short description of the data types supported by ReQL already gives an insight
to all the possibilities of querying with RethinkDBs proprietary query language. The
following sections will extend this insight by introducing some of the many features that
ReQL provides.
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r.table('wizards').get(1).typeOf()

# returns:

# "SELECTION<OBJECT>"

Listing 5: Usage of the TypeOf command

Features ReQL itself is designed to offer an extensive amount of functionality, enabling
users to not only manipulate json documents but also facilitating the usage of common
SQL capabilities. To achieve this ambitious goal the language is based on functional
programming languages like Haskell and Lips. However, a knowledge of those languages
is not necessary, since ReQL was developed to embed into an abundance of different
programming languages. To allow for this natural integration into different languages
so called ’drivers’ are developed. The official RethinkDB Website groups the existing
drivers into three categories:

1. Official Drivers

• Drivers developed and maintained by the core team of RethinkDB developers

2. Community-supported drivers

• Drivers developed and maintained by members of the large open-source com-
munity of RethinkDB. To be accepted as a community-supported driver, the
json driver protocol has to be used and the features of at least Rethink 2.0
ReQL must be supported.

3. Drivers with limited features

• Drivers developed by members of the open-source RethinkDB community,
that do not provide full support of RethinDB 2.0 ReQL.

A list with all available drivers by category (as of April 2019) can be found in Appendix B.
To use ReQL in one of the (partially) supported programming languages the user must
import the driver the way that is specified by said programming language. Afterwards
he/she can construct queries by calling methods from the driver.

Listing Listing 6 shows how this works exemplarily for python.

Of course this embedding of ReQL has limitations. One can not use every feature offered
by the ’host language’. This applies to those operations, that have side effects and control
blocks. Listing Listing 7 shows the limitations of embedding ReQL with the help of an
example. It illustrates two ways of getting all documents that match certain criteria,
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#import the RethinkDB package

import rethinkdb as r

#connect to the server on localhost and default port

conn = r.connect()

#create a table `users`

r.table_create('users').run(conn)

#get an iterable cursor to the `users` table

r.table("users").run(conn)

Listing 6: Importing ReQL as a package to python

one employing operations native to python (if - else) and one employing the ’r.branch’
command included in the RethinkDB package.

In this listing only the latter query would work, since the first one is based on python
operations with side effects. Other operations and control blocks that can not be
used inside ReQL queries include but are not limited to print statements, switch-case
statements and loops.

# WRONG: Get all wizards older than 30 using the `if` statement

r.db("wizards_world").table('wizards').filter(lambda wizard:

True if wizard['age'] > 30 else False)

# RIGHT: Get all wizards older than 30 using the `r.branch` command

r.db("wizards_world").table('wizards').filter(lambda wizard:

r.branch(wizard['age'] > 30, True, False))

Listing 7: Limitations of the embedding of ReQL

Additionally, this listing also gives an insight into another important functionality of
ReQL: Chaining commands. To construct a query in this query language, a nearly
arbitrary number of commands can be chained together, separated with ’.’.

To emphasise on this feature and to really illustrate how it works, listing Listing 8 provides
a good example for this. First, all documents of a specific table are returned, then by
adding ’.pluck(”last name”)’ only the last name field of each document is returned. This
can then be filtered further by adding ’.distinct()’ to it and so forth.

As previously mentioned ReQL has many powerful features, including the SQL-like
combination of multiple tables with JOINs. For reasons of performance JOINs in ReQL
are automatically distributed (see Query Execution).

Now anyone who is familiar with SQL knows that many different JOINs exist in the
world of databases. RethinkDB supports four, called inner-join, outer-join, eq-join and
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# Get all entries of a table

r.db("wizard_world").table("wizards")

# Return only the last names of the documents

r.db("wizards_world").table("wizards").pluck("last_name")

# Get all the distinct last names (remove duplicates)

r.db("wizards_world").table("wizards").pluck("last_name").distinct()

# Count the number of distinct last names

r.db("wizard_world").table("wizards").pluck("last_name").distinct() c

.count()↪→

Listing 8: Chaining of commands in ReQL

zip. The first two work similar to their SQL-counterparts, which is why they are not
discussed in greater detail in this book. The last and second last however, are ReQL
specific and will be explained with the help of a short example.

r.db("demo").table("wizards").eqJoin("house",

r.db("demo").table("houses"))↪→

# Example output only eq_join (one document)

{

"left": {

"haircolor": "brown" ,

"hobbies": "Collecting magical creatures" ,

"house": "d20dda48-6112-499b-ac2f-5288faa6bb4f" ,

"id": "a7892a90-a211-493a-a194-734d12387741" ,

"name": "Newt Scamander"

} ,

"right": {

"animal": "badger" ,

"house": "Hufflepuff" ,

"id": "d20dda48-6112-499b-ac2f-5288faa6bb4f" ,

"score": 60

}

}

Listing 9: The Eq-Join function in ReQL
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r.db("demo").table("wizards").eqJoin("house",

r.db("demo").table("houses")).zip()↪→

#Example output with zip() (one document)

{

"animal": "badger" ,

"haircolor": "brown" ,

"hobbies": "Collecting magical creatures" ,

"house": "Hufflepuff" ,

"id": "d20dda48-6112-499b-ac2f-5288faa6bb4f" ,

"name": "Newt Scamander" ,

"score": 60

}

Listing 10: The Zip function in ReQL

The ’eq join’, as any other join, has the goal of combining two tables with the help of a
common indicator. In this case, a function can be applied to any field of the left-hand
table and is then matched to the right-hand tables primary keys or secondary indexes.
Since ReQL automatically adds a primary key for each document in a table, users have
the option of declaring other fields as secondary indexes if needed, speeding up many
read queries (“Using secondary indexes in RethinkDB”, 2019). The ’eq join’ command is
more performant than the inner or outer join and operates more efficient.

Considering listings Listing 9 and Listing 10 one can not only see an example of an
eq join query, but also an example output. This output of course only displays one entry
of an array of documents that are returned as a result of this query. When taking a look
at the first query of this listing, it becomes apparent, that the output is split into a left
and right side. Each side contains the matching document of the respective table.

The second query of the listing Listing 9 shows how the two parts can be merged together
with help of the zip function. This function is ”used to ’zip’ up the results of a join
by merging the ’right’ fields into ’left’ fields of each member of the sequence” (“ReQL
command: zip”, 2019).

Of course, it is way out of scope for this chapter to provide a comprehensive guide on
all of ReQLs many functions and features. However, RethinkDB has an extensive and
well-written documentation, enabling users of all skill levels to write ReQL queries 2

2https://www.rethinkdb.com/docs/
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Architecture

RethinkDB is supposed to be used in a cluster configuration. Despite the database
being capable of running on a single server, many of the replication features, described
below, will only be available in a cluster. The Raft algorithm is used to distribute cluster
configuration between nodes.

Sharding & Replication Data is partitioned into shards (see “RethinkDB Architecture
FAQ”, 2019). Each table in the database can have up to 64 shards. When a table gets
sharded the data is divided into a specified amount of equally sized ranges. The primary
key of each document determines the shard a document will be stored in. After shard
creation there is no automatic re-balancing mechanism. Therefor re-balancing activities
must be initiated manually.

Shards can be replicated over multiple nodes. A set of replicas always has one primary
shard. The primary shard is responsible for all write and read operations on the
documents it holds. When a table is configured for replication, RethinkDB applies a set
of heuristics to distribute the shards over multiple systems. Alternatively the Database
can be configured to distribute shards to specific servers in the cluster by facilitating
server tags. Server tags are identifiers for one or a set of servers.

Query Execution Query Execution is a multi-step process that can be described as
follows.

1. One server in the cluster receives a query from a client and creates an execution
plan in form of a stack. Lower operations on the stack retrieve data. Higher
operations transform the data.

2. The stack is distributed to every relevant server in the cluster for execution. All
participating nodes can operate in parallel and stream their results upwards the
execution stack.

3. The results are aggregated and sent to the client

To enable concurrent access, RethinkDB uses a copy-on-write mechanism for documents
that are already read by an other client. A write operation will lead to consistent results
just for a read operation that was started after the write process finished completely. If
multiple clients try to write to the same document simultaneously, exclusive block-level
locks are used. The client does not notice or manually control the lock mechanism.
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Atomicity of operations Most operations changing a document are atomic in nature.
An update operation can be finished in a single operation as long as the execution is
proven to be deterministic. Exceptions in RethinkDB are operations that facilitate
JavaScript operations, random values and sub-query execution.

Data Storage Data can be stored using many common file systems. The most perfor-
mant solution is too use direct disk I/O. Data in the system is organised in B-Trees and
managed by an integrated storage engine. The engine is capable of automatic garbage
compaction and is inspired by Better File System (modern copy on write filesystem)
(BTRFS).

Change feeds

The main feature of RethinkDB is to actively push changes to a client, when these
occur. In ReQL this behaviour can be triggered by using the changes() operation in a
query(“RethinkDB Changefeed Docs”, 2019).

To receive changes on a table called Houses, one can execute the following query:

r.table("Houses").changes();

The query would result in a constant stream of changes in the form shown in Listing
Listing 11. For more efficient use only changes are transmitted.

{

"new_val": {

"id": "0539dcdb-f0f7-482c-9721-ead006dfef30" ,

"name": "Gryffindor" ,

"points": 0

},

"old_val": {

"id": "0539dcdb-f0f7-482c-9721-ead006dfef30" ,

"name": "Gryffindor" ,

"points": 202

}

}

Listing 11: Form of a single change response

The change feed feature can be used with many different other features of the query
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language and does not have to be applied to the end of the query all the time. The next
example plucks the output of the change feed to only show the name and id property of
a changed document.

r.db('Demo2').table('Houses').changes().pluck('name', 'id');

More complex queries sometimes require some preconditions to be fulfilled. The
orderBy() operation needs the property that is used for sorting to be indexed. Also the
query needs a limit, because change feeds don’t work on potentially infinite streams of
data. A working query would look like this

r.db('Demo2').table('Houses').orderBy({index:'points'}).limit(3) c

.changes({includeOffsets:true});↪→

The changes() function can take multiple options. One of them can be seen above. The
includeOffset option leads to a response with offset parameters. These parameters can
be used to keep local copies of the list in the right order.

Additionally change feeds can be squashed. Squashed feeds buffer change data and trigger
change commands less frequent. This greatly improves performance on the client and
server.

4.3.4. Reflection

Cap Theorem

In general RethinkDB does value Consistency over Availability (see Listing Figure 4.6).
The database guarantees that a write operation is distributed to all systems before the
change can be read, like described in section 4.3.3. Therefore any normal read operation
will always return the cluster wide consensus at any give time.

The normal behaviour can be changed on a per query basis. A user can specify that the
given request should favour availability. In such a case the database returns the next
available record regardless of it being on a primary replica. A query using this behaviour
can be created as follows

r.table("Houses").run({readMode: "outdated"});
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Figure 4.6.: Overview of the CAP Theorem in RethinkDB

Performance

In a test conducted by the RethinkDB core team the developers concluded that the
database scales horizontally in a near linear fashion (“RethinkDB Performance Report”,
2019) as can be seen in Figure 4.7. The developers further imply that there will be
ongoing efforts to improve upon this results.

Comparison to real-time sync APIs

The functionality of RethinkDB can be compared to many real-time sync API services
like Pusher3 or Firebase4. There are some key differences between those kinds of systems
and RethinkDB.

The capability to store information is the most noticeable difference. Sync APIs don’t
store any data. They are intended to send uniform event streams to a large amount of
recipients. Other key differences can be taken from Table 4.1.

3https://pusher.com
4https://firebase.google.com/products/realtime-database/
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Figure 4.7.: Overview of performance test results(“RethinkDB Performance Report”,
2019)

Use Cases

RethinkDB is useful in any situation where data needs to be stored and distributed at
the same time(“RethinkDB FAQ”, 2019). The following list contains major use cases for
the database.

• Collaborative web and mobile apps

• Streaming analytics apps

• Multiplayer games

• Real-time marketplaces
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Table 4.1.: Comparison of RethinkDB and real-time sync APIs

RethinkDB Real-time sync APIs
Open source
→ Can be deployed on any infrastructure

Cloud Service

General Purpose Database System
→ Can run complex queries

Syncing documents → limited
querying

Designed to be accessed from an application
server
→ More complex to set up
→ More flexible
→ Works for sophisticated applications

Access directly over browser
→ Easy to setup
→ Limits flexibility

• Connected devices

There are some use cases RethinkDB should not be applied to, gathered in the following
list.

• Applications that need full ACID support

• Strong schema enforcement is required

• Computationally intensive analytics

• High write availability is critical

Conclusion

Working with RethinkDB we found the documentation to be extraordinarily comprehen-
sive. Every major feature could be found described in great detail and supported by
multiple examples. Nevertheless there is some confusion concerning the term of real-time
databases, since many different definitions exist. This made it harder to evaluate the
topic in general and specifically in connection with RethinkDB. This was complicated
even further by the fact that RethinkDB in fact ’rethought’ databases, delivering a
product that can hardly be forced into predefined categories.

However, due to this impossibility to classify the database, RethinkDB was very refreshing
to work with, providing many new features and combining the advantages of multiple
different database types.

Working with the Database proved to be very convenient. The documentation made it
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easy to get used to the specifics of RethinkDB. We had no chance to use all the features
ReQL gives the user, due to it having to many and specialised features. We also were
not able to test the software in a cluster configuration. Therefore testing the behaviour
with sharding and replication setting applied was not possible.

In general we found RethinkDB very useful and where able to identify fitting use cases
while testing the database.

We think that not only real-time databases but also RethinkDB will become more
and more important in the near future, with big data and IoT redefining the world of
databases.
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5. Graph Databases – Neo4j

Thore Krüss, Lennart Purucker, Johanna Sommer

5.1. Abstract

This chapter of the book gives an overview of Graph Databases as part of the NoSQL
landscape, focusing on Neo4j as a specific implementation. The goal of this work is to
give a timely overview of Graph Databases today as well as assessing recent events and
additions to this technology. The reader will be given a comprehensive introduction to
the field and can find suggestions on how Graph Databases can help easier model data
structures and in which scenarios it is superior to relational database models.

After a detailed theoretical presentation of Graph Theory and how it is applied to Graph
Databases, a comparison to relational database management system (RDBMS) as well
as the prevalent advantages of Graph Databases are given. Next, Graph Databases in
practice are shown by the example of Neo4j, giving a comprehensive overview about
setup and characteristics specific to this implementation. After a summarizing conclusion
about Neo4j, an overall reflection of Graph Databases including personal experience and
possible future work closes this chapter.

5.2. Introduction

The hype around Graph Databases in todays NoSQL-landscape can not be disregarded.
The popularity for Neo4j has been steadily increasing and with its connection-first
approach and close to reality data model Neo4j has been gaining fans from all over the
database community (“Neo4j: Product”, n.d.).

But Graph Database research has its beginnings already in the early 90s. During this
time, numerous proposals came up, describing a semantic network to store data about
the database. That was, because contemporary systems were failing to consider the
semantics of a database. The Logical Data Model (Kuper, 1985) was proposed, trying to
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combine the advantages of relational, hierarchical and network approaches in that they
modeled databases as directed graphs, with leaves representing attributes and internal
nodes posing as connections between the data.
Similar to that, the Functional Data Model (Shipman, 1979) was proposed with the same
goal, focusing specifically on providing a conceptually natural database interface (Angles
& Gutierrez, 2018).
During this period, most of the underlying theory of Graph Databases was created. It
was most likely because of insufficient hardware support for big graphs that this research
declined, only to be picked up again now, powered by improved hardware. Today’s
focus in Graph Theory research lies primarily on actual practical systems and on the
theoretical analysis of graph query languages (Angles & Gutierrez, 2018).

Especially practical implementations of Graph Database Theory have gained traction, as
real world problems are more often than not interrelated - hence graphs are extremely
useful in understanding the wide diversity of real-world datasets (Robinson, Webber, &
Eifrem, 2013).
The emerging of social networks has naturally contributed to the development of graphical
database models, with big players like Twitter and their implementation FlockDB entering
the field. In those social network situations, a so-called social graph can effortlessly
model attributes of a person as well as relationships between people. While in traditional
RDBMS the apparent friend-of-a-friend-problem would be solved with a join over all
relevant tables, in graph database technology this can be achieved with a traversal, which
is far more cost inexpensive (J. J. Miller, 2013).
Another meaningful topic today are recommender systems, where most work focuses on
optimizing machine learning algorithms. This specific context also poses challenges in
database theory. However again, the graph model gracefully maps item similarities and
correlations between user behaviour (Huang, Chung, Ong, & Chen, 2002).

These application fields bring very distinct workloads that require specific query languages
to process. There are two different kinds of workload: in social network transactions low-
latency online graphs are processed while for example link analysis algorithms evaluate
high-throughput offline graphs (Angles & Gutierrez, 2018). Many query language propos-
als have come up recently, differing mainly in the underlying graph data structure/model
and the functionality provided (Wood, 2012).

A deeper description of the theory behind graph databases will be given in subsection 5.3,
aiming to connect the data model to its fields of application as well as comparing it to
RDBMS. This comparison will be picked up in subsection 5.4, where an implementation
example will be given, focusing in particular on Neo4j and also explaining how an SQL
example would be transformed to fit Graph Databases. Lastly, our findings will be stated
in subsection 5.5 with a general conclusion.
Since the topic of Graph Databases contains extensive theory, this chapter of the book will
explain the theory and Neo4j in equal parts, to give an easy-to-understand introduction
into the topic.
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5.3. Graph Database Theory

A graph database is a unique type of database designed to store data without transform-
ing it into predefined structural models, whereby accessing and storing of relationships
between data is as important as accessing and storing the data itself (“Neo4j Website:
What is a Graph Database?”, n.d.). Graph databases offer CRUD methods as an online,
operational database management system. They focus on operation availability, transac-
tional performance and integrity. Thus, graph databases are usually incorporated into
online transaction processing (OLTP) systems (Eifrem, Webber, & Robinson, 2015).

A graph database can be implemented with different concepts, non-native or native,
for storage and request processing. Additionally, a data model must be chosen. The
most common graph models are property graphs, hypergraphs and triples (Eifrem et al.,
2015). For this eBook, the (labeled) property graph model will be examined because it is
the most popular model in industry practice (Eifrem et al., 2015) and the theoretical
foundation of Neo4j (Lal, 2015).

5.3.1. Description of Data Model and Functionality

Before the explanation of the property graph model, a short recap of graphs is needed.
There is no need for general graph theory, like search algorithms, to understand graph
databases (Eifrem et al., 2015).

Graph Basics

A graph is a theoretical structure which represents a set of entities and their relationships,
whereby entities are represented by nodes (vertices) and relationships by links between
nodes (edges) (Eifrem et al., 2015; Lal, 2015). One-way relationships, like being the parent
of someone, are represented as directed edges. On the contrary, two-way relationships,
like being married to someone can be represented as two directed edges between both
related nodes. Some literature tends to represent bidirectional (two-way) relationships as
one undirected edge (e.g. an edge without arrows). It is more appropriate to use two
directed edges because this is closer to an actual implementation where two physical
pointers would exist. See figure 5.1 for an example.
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Figure 5.1.: A graph representing a small family. Tom, Sarah and Peter are entities and
thus represented as nodes (circles). The two-way relationship between Tom
and Sarah, their marriage, is depicted as two directed edges. Lastly, Tom
and Sarah are the parents of Peter and thus both have the relationship ”Is
parent of” directed towards Peter.

The property graph model

The (labeled) property graph model is based on the theoretical graph from above (Lal,
2015). It increases the overall information that a normal graph can store. Two such
extensions, as the model name illustrates, are additional labels for each node and
properties for nodes and edges. Figure 5.2 shows a labeled property graph.

Figure 5.2.: A labeled property graph representing a small family (Eifrem, Webber, &
Robinson, 2015; Lal, 2015). Compared to figure 5.1 additional information
can been stored.

Concepts of the property graph
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Nodes: Like a normal graph, the property graph represents entities as nodes. The nodes
in figure 5.2 are the circles of Tom, Sarah and Peter. Each node can have any number of
properties (e.g.: ”name: ‘Tom’” and ”id: 1”) and multiple labels (e.g. ” adult”) (“Neo4j
Website: What is a Graph Database?”, n.d.).

Labels: Nodes are tagged with labels which describe the role of the node within the
system (Lal, 2015). In figure 5.2, the white text on black rectangles, ”adult” and ”child”,
are labels. Labels can also add metadata (constraints and indices) to the node (Lal, 2015;
“Neo4j Website: What is a Graph Database?”, n.d.).

Properties: Properties are attributes (key-value pairs) of nodes or relationships. They
are used to sore further information about the entity or relationship (Lal, 2015). Each
bold and non-italic written word in figure 5.2 is a key of a key-value pair property
(e.g. ”name:”, ”id:”, ”since:”). The content that follows the colon (e.g. ”Peter”, ”3”,
”2017/02/02”) is the value.

Relationships: Again, relationship are depicted as directed edges (links) between nodes.
Relationships must have a name as well as a start and end node (Eifrem et al., 2015) .
In figure 5.2, "IS PARENT OF" and "IS MARRIED TO" (the italic and bold written words)
are the names of relationships. The text below (”since: [. . . ]”) is the property of the
relationship. Arrows indicate the direction of the relationship. In practice, the direction
is ignored and navigation through each edge (relationship) is possible (Lal, 2015; “Neo4j
Website: What is a Graph Database?”, n.d.). Generally, relationships store cost quantities
according to the usage of the system (e.g. distance, ratings, etc.) (“Neo4j Website: What
is a Graph Database?”, n.d.).

Storage

“Storage deals with how the data is stored physically and how it is represented logically
when retrieved”(Lal, 2015)

One of the main tasks of a graph database system is to traverse relationships. As
mentioned earlier, storing and accessing the relationships in a graph database is crucial.
They are stored explicit (per directed edge) instead of being inferred from stored attributes
(like primary/foreign keys in a relational model) (Lal, 2015) . Thus, any kind of storage
system needs to be able handle the relationships explicitly. Graph databases can either
use native graph storage, systems that are built for storing and accessing graphs, or
non-native graph storage, systems that store adequately transformed graph data in
relational or non-graph NoSQL databases (Eifrem et al., 2015).

Non-native graph storage
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Non-native graph storage transforms the data from the graph model (e.g. property graph)
into relational or other non-graph NoSQL database models (document-oriented, etc.).
When accessing the data, the responsible system must rebuild (infer) the relationships
at runtime. This is mostly done by a query engine which is responsible for executing
incoming queries and thus fetching or changing the data (CRUD methods) (Lal, 2015) .
In the case of a RDBMS, the query engine would first make the relationships explicit
by inferring them through utilizing foreign keys and join-statements before returning or
processing the data. This preprocessing results in more costly operations and inefficient
traversing of relationships (Lal, 2015). Non-native graph storage exists because it allows
the use of well known, mature and well documented databases like MySQL (Eifrem et al.,
2015).

Native graph storage

The key aspect of native graph storage is that it does not rely on actual indexes. The
relationships between nodes within the graph are “natural adjacency”(Eifrem et al.,
2015) indices. Thus, the nodes are stored in such a way that they are physically linked
to each other on the disk. This is called “index-free adjacency”(Eifrem et al., 2015),
which is in practice done by pointers. Accordingly, searching for a specific information
in a native graph storage is implemented by traversing through pointers. This causes
queries on native storage to be highly efficient compared to non-native storage which
uses join-statements and index lookups (Eifrem et al., 2015) .

5.3.2. Advantages of Graph Databases

Graph databases offer substantial advantages when working with connected data (Lal,
2015). Its performance, flexibility and agility are the key differences to other databases
(Eifrem et al., 2015). The following section will take a closer look at these three advantages.
More details and references to actual research data on these advantages can be found in
the section Comparison: Graph Databases and Relational Databases (5.3.4).

Performance

A graph database has much higher query processing performance compared to relational
and other NoSQL databases. This advantage becomes more and more prevalent as
the size/amount of stored data grows. In the relational world more data would mean
a higher join-intensity and thus worse performance. Whereas in the graph database
world the performance remains to be almost constant even for an exponential increase of
size. This is the cases because queries are being restricted to parts of the graph (e.g. a
subgraph) which contains the information of interest. Therefore, querying only needs

97



5. Graph Databases – Neo4j

time proportional to size of the subgraph and not to the size of the whole graph (Eifrem
et al., 2015; Lal, 2015).

Flexibility

The flexibility of a graph databases must be understood in the context of the graph
database model. The model is flexible and so are graph databases. Furthermore, this
flexibility is most apparent for an actual operational graph database in production
environments.

The paradigm of fitting data to predefined data models, as in SQL, is neither efficient
nor desired by developers. Instead fitting an easily extensible and changeable data model
to newly emerging data is more appropriate for fields of graph database applications
(See more in the section ”Fields of Application”, 5.3.3). Thereby the process of designing
a complex and mostly final data model at the start of the database implementation, a
point in time where it is impossible to predict all kinds of data that might be needed in
the future, gets replaced by designing a basic data model with the expectation to change
it in the future (Eifrem et al., 2015; Lal, 2015).

This process is natively supported by graph databases. All components of a graph
model (e.g. for the property graph model: nodes, properties, labels and relationships)
can be added to an existing model without invalidating queries already in use. This
concept of graph databases also minimizes maintenance cost and risk because the need
for migrations (e.g. the equivalent of schema migrations for a relational database) is
reduced (Eifrem et al., 2015; Lal, 2015).

Agility

In today’s agile software development world, where developers need to focus on a certain
task for a short time before switching to a different task, software tools that fit this
iterative approach are more favorable. Databases that offer data models which can grow
with new data meet this requirement. Additionally, databases that offer data models
which do represent the data closer to its actual format (e.g. not transferring it into tables)
are also more favorable because they reduce the time between design and implementation
which is appropriate for the short time a developer may have to implement a database.
Lastly, modern test-driven development requires agile databases to be easily testable.
(Eifrem et al., 2015; Lal, 2015).

A graph database is “schema-less” (Lal, 2015). It does not transform data (e.g. normaliza-
tion in the SQL world) but rather tries to represent the data as close to its actual format
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as possible. Furthermore, the API and query language design of graph database increase
testability (Eifrem et al., 2015) . Finally, the flexibility of its data model enables the
database to evolve with new data. As a result, a graph database has the characteristics
to be agile software.

5.3.3. Fields of Application

When reading through use cases described by marketing teams of graph database
management systems (for example: Neo4j (“Neo4j Website: Why Graph Database?”,
n.d.; Robinson; n.d.) ), it may feel like any problem could be solved with a graph database.
Solving any problem with a graph database may be possible but this fact alone is not a
valid reason to do so.

Instead, cost efficiently, compliance with company polices, available developer skills and
available time are the primary reasons to choose a graph database for a specific use
case. Additionally, replacing existing well-working and established database management
systems should have major and urgently needed advantages (Eifrem et al., 2015).

Graph databases can create these advantages for use cases which handle connected data.
Below are some short examples of large companies that use graph databases. Subsequently,
the top five use cases from the perspective of the graph database management system
Neo4j are explained.

Enterprise Use Case Examples

Social Networks: Twitter, Facebook and LinkedIn use graph databases to manage user
information and feed of users. This contains information like updates from friends, news
and potential posts of relevance or interest (e.g. Jobs for LinkedIn users) (Lal, 2015).

Routing: Prominent navigation services like Google Maps, TomTom and Sygic utilize
graph databases for map navigation (Lal, 2015).

Search: Google (Google Knowledge Graph) and Facebook (Facebook Social Graph) are
also using graph databases for storing the connection of content for search functionalities
(Lal, 2015).

Recommendation: Walmart and eBay are both using graph databases and value their
performance for real-time product recommendations (Robinson; n.d.).
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Neo4j Use Cases

Fraud Detection

Graph databases are well fit for fraud detection because good detection mechanisms need
to analyze the relationships between data. In detail, if the relationships between certain
data objects is conspicuously high, the risk of fraud is very high. As an example, take an
E-commerce system. A normal user would use one or two credit cards to buy products.
A fraudster would use a lot of different credit cards which are most likely stolen. This
relationship density between users, credit cards and purchased products is modeled by a
graph database and is therefore easily measurable and observable (Robinson; n.d.).

As mentioned before, graph databases are built for storing and rapidly traversing re-
lationships, thereby supporting advanced detection mechanisms that need to perform
relationship analysis between a lot of data.

Real-Time Recommendation Engines

A real-time recommendation engine can only be as effective as the database it is using
because the engine needs information about the existence, quality and strength of
data relationships. Information must either be computed from the database in a time-
consuming manner or made available natively, as with graph databases (Robinson; n.d.).
Graph databases model this information without any additional computation. Existence
is modeled by edges (relationships), quality and strength by key-value pairs (properties)
of edges.

In addition, the need to easily add and combine data (e.g. user behavior, demographics
and their purchase history) and then analyze this new dataset in real time for possible rec-
ommendations is crucial for such an engine (Robinson; n.d.). A graph database supports
simple addition and combination with its already mentioned flexibility. Furthermore, the
performance advantage of graph databases in this context is again very favorable when
analyzing this new dataset.

Master Data Management

In a company, master data is data such as users, customers, products, accounts, partners,
sites and business units. Identifying, cleaning, storing and governing this data is called
master data management (MDM). Best practice for master data management (MDM)
is to create one master data store which contains the data of the entire company. As
a result, any business application that might create or use this data only uses only the
same storage system. Hence, the master data store is one storage system for a lot of
different applications which still needs to fully function in real time and might need to
adapt to new business requirements. Thus, it must provide a purpose-built, dynamic
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and sometimes unconventional data model (Robinson; n.d.). These requirements are
perfectly matched by the flexibility and agility of a graph database.

Network and Information Technology Operations

The structural representation of an information technology (IT) infrastructure network is
a graph. Consequently, it should not be a surprise that a graph database is a good solution
to model, store and serve requests for an IT infrastructure environment. Information in
an IT infrastructure environment are for example device configurations, infrastructure
interdependencies, any kind of event (log files, error messages, etc.) and administrative
details. Systems that use such information can, in the event of a failure, inform the right
administrator about what went wrong where and when in real time (Robinson; n.d.).

A graph database is not only able to model the network in its native representation but
is also able to add all this information to its storage with ease. Network administra-
tors are nodes with connection to their devices and field of responsibility (subgraphs).
Configurations are properties of device nodes. Any interdependencies are represented
by relationships. Lastly, events are nodes linked to the device that created it. This
requirement for a native data model and sufficient performance is fulfilled by a graph
database.

Identity and Access Management

The process of deciding which identity can access which resource is called identity and
access management (IAM). This decision process also needs to utilize information about
identities (e.g. administrators, users), resources (e.g. files, devices) and rules (e.g. “user
X can access file Y”) that must be stored somewhere. Conventional storage options, like
directory services or application specific solutions, tend to be unsuitable because they
cannot manage the required complex interconnection structures of big organizations or
are too slow for bigger datasets (Robinson; n.d.). Whereas a graph database is a valid
solution because its agility allows the developer to easily model the complex structures
and its performance does not slow down for bigger datasets.

5.3.4. Comparison: Graph Databases and Relational Databases

The comparison between Graph Databases and Relational Databases is a known field,
a lot of literature exists on this topic already. Throughout the comparisons, the two
methods are always assessed under the same aspects: performance, flexibility, security
and maturity.
For those comparison points it makes sense to focus on specific implementations of
the technologies, hence in this section Neo4j will be chosen as a concrete precedent for
Graph Databases, whereas MySQL will be the example implementation for Relational
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Databases.
It is important to note that literature comparing the two is already rather old and there
are no comparisons done on newer versions. There is no new version of mySQL, but
two new releases for Neo4j. Those have included a new query engine and performance
optimizations. It is hence expected that if such a comparison were to be done again
today, the performance results of Neo4j would improve.

Performance

Detailed surveys on performance of both technologies already exist in literature, for
example from Vicknair et al. (Vicknair et al., 2010). In this specific instance, MySQL
version 5.1.42 and Neo4j-b11 were compared. The queries chosen for the experiments
were similar to types that are used in real world provenance systems. Typically in this
scenario, for one node one traverses the graph to find its origin. Another use case in this
context is, if a data object or node is deemed incorrect, this information needs to be
propagated to all its descendants/child nodes (Vicknair et al., 2010).
Further on, the queries were partitioned into structural queries referencing the graph but
not the payload itself, and data queries using the actual payload data. It is important to
note that the payload data in this case was integer payload data, as different types are
handled separately depending on the framework.
In the traversal queries, Neo4j clearly outperformed MySQL, sometimes even being faster
by the factor of 10. Though that was expected, as Relational Databases are not designed
for traversals. MySQL for this part of experiment falls back to a standard Breadth First
Search, which is not optimal for this scenario. Neo4j on the other hand has a built in
framework for traversals, making it superior in terms of performance for the traversal
queries (Vicknair et al., 2010).
Contrary to that, in the data queries MySQL turned out to be more efficient. This result
was partly due to the fact that Neo4j uses Lucene for querying, which treats all payload
as text, even though in this scenario the payload is of type integer. But also when the
payload changes to text, MySQL had better performance in the experiments (Vicknair
et al., 2010). Lucene has since been dropped and replaced with Cypher in Neo4j version
3.
The researchers also took into account a special case for the experiments, trying the data
queries with payload that is closer to actual real world data - text with spaces in between
the words. Surprisingly, at a large enough scale Nao4j outperformed MySQL by a large
amount for those queries.
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Flexibility

The flexibility aspect compares both database technologies in their behaviour when taken
out of the environment that they were created for (Vicknair et al., 2010).
For Relational Databases an uncommon environment would for example be ad-hoc data
schemes that change with time, whereas for Graph Databases a less typical dataset would
be one without many connections between the individual nodes (Jaiswal, 2013). MySQL
is optimized for a large-scale multi-user environment, hence trying to use it for smaller
applications comes with a large overhead of functionality that has to be implemented
with it but that may not even be needed for this specific application. Neo4j is typically
targeted towards more lightweight applications, but manages to scale really well, having
a scalable architecture that also accounts for speed (“Neo4j Website: Why Neo4j? Top
Ten Reasons”, n.d.). Its easily mutable schema makes it more flexible with data types
that are rather untypical for Graph Databases.

Security

Neo4j does not have built in mechanisms for managing security restrictions and multiple
users in their community edition (Jaiswal, 2013), but the fee-based enterprise edition
provides such functionality. MySQL on the other hand natively supports multiple users
as well as access control lists. (“MySQL Website: Security in MySQL”, n.d.)

Maturity

For the comparison under the aspect of maturity it makes sense to talk about database
implementations in general. Maturity refers both to how old a particular system is and
to how thoroughly tested it is (Vicknair et al., 2010). Since all Relational databases
- including MySQL - use the same query language SQL, support is equal over all
implementations and support for one implementation is applicable to all others (Jaiswal,
2013). Neo4js version 1.1 was released in February 2010. While Neo4j is a for-profit
framework and has decent support from its parent company, this does not apply to
all graph database implementations (Vicknair et al., 2010). Furthermore, the query
languages differ from implementation to implementation, separating them in that aspect
and making support for one implementation not applicable to another one.
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5.4. Implementing a Graph Database Model

This section shall outline the general approach, how to convert an existing relational
database model into a property graph model. In the second part an introduction to
Neo4j, the implementation of a database model in Python and basic querying in an
application and with Neo4js own query language

”
Cypher“ will follow.

5.4.1. Converting a Relational Database Model

There are a couple of guides available describing how to build a database model for Neo4j.
Since the database itself is schema-less, multiple schemas can be used and implemented
at the same time. Nevertheless an application needs a model of the data. Neo4j states
in (“Neo4j Website: Model: Relational to Graph”, 2019) that it is possible to transfer
almost all existing relational models into a graph model. The general approach has been
described in (Hunger, n.d.). The first step in this conversion is to consider the names of
all Non-JOIN-Tables as labels. Foreign keys will become relations. JOIN-Tables will be
converted into relations as well with additional properties added to the relation (“Neo4j
Website: Concepts: Relational to Graph”, 2019). The rows will be converted into nodes
connected by edges based on the formerly converted relations. Attributes not covered in
the previous steps will become properties of a node.

5.4.2. Implementing a Sample Project with Neo4j

In this section the modeling and setup with Neo4j will be lined out and a sample project be
described utilizing available Python-Libraries to implement a sample project. There are
two different available versions of Neo4j. First of all there is the Open Source community
edition which is published under the GPL. Additionally Neo4j Inc sells licenses for an
enterprise edition (“Neo4j Website: Neo4j Subscriptions”, n.d.) including support and
several additional features, such as replication, multiple users, several query performance
optimizations and no limitation for the number of nodes in the database (the community
version is limited at 34 Billion nodes). The following examples have been implemented
and tested with the community edition.

Setting up Neo4j

Neo4j is available for Windows, Linux and Mac and can be installed via the provided
packages. While there is a minimum requirement of 2GB of RAM, Neo4j recommends
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16GB or more (“The Neo4j Operations Manual v3.5”, 2019, Chapter 2.1). Since Neo4j
is implemented in Java, starting it can be done by invoking it with a Java runtime of
choice installed. The default configuration does not need to be modified to get started.

High availability The community edition of Neo4j does not allow to set up a cluster
of multiple Neo4j instances. This feature is reserved for the enterprise version. The
setup of a causally consistent cluster is explained in the documentation (“The Neo4j
Operations Manual v3.5”, 2019, Chapter 5.1). The reference architecture as shown in
Figure 5.3 recommends an odd number of at least three

”
Core Servers“ connected into

a RAFT-Cluster handling mostly write requests. They ensure consistency of the data.
Connected to this core cluster may be an arbitrary number of

”
Read Servers“. They

only handle the – sometimes resource costly – read requests but are not relevant to the
clusters integrity. Information from Core Servers is replicated asynchronously to the read
replicas.

Figure 5.3.: Neo4j causal Cluster Architecture (“The Neo4j Operations Manual v3.5”,
2019, Chapter 5.1)

Classification of Neo4j within the CAP Theorem For this kind of classification it is
again necessary to differentiate between the community and the enterprise edition. Since
it is not possible to set up a Neo4j-Cluster with the community edition it can not be
considered a distributed system. Therefore the CAP-Theorem is not applicable (Mehra,
2017).
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As mentioned in section 5.4.2 the enterprise edition can be set up as a causal cluster.
Causal consistency though does not fulfill the criteria Brewer put out for consistency
(Kleppmann, 2015a) so it can not be considered as

”
C“ under the CAP Theorem. It is

important to note that a causal cluster is still ACID compliant. Due to the nature of the
core servers using a consensus-based protocol (RAFT) availability in case of a network
partition only applies to the majority of the cluster (Penchikala, 2016). This does make
them partition tolerant though, fulfilling all criteria for

”
P“.

According to Michael Hunger, one of the Neo4j developers, the causal cluster architecture
can be considered as a

”
CP“ system (Penchikala, 2016). Considering the the concerns

lined out by Martin Kleppmann in his blog post (Kleppmann, 2015b) Neo4j should
be considered as

”
P“ – if no alternative to CAP is considered as proposed by him

(Kleppmann, 2015a).

Modeling the graph database

The sample project maps the relations within users in a social network. Figure 5.4
outlines a data model with circles representing nodes. They are connected by edges
showing their relationships. For this example labels are represented as colours. In this
sample model there may be an arbitrary number of persons (orange), who may be friends
with other persons. Additionally, they can share interests (green) and may be a member
of a group (purple). Furthermore they can state from which country (yellow) they are
from.
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Figure 5.4.: Sample database schema
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Implementation in Python

While it is possible to manage the database utilizing the CRUD-functionality from Neo4js
own query language Cypher (see 5.4.2) this is not really suitable for an application.
Developers familiar with object-relational mappings (ORMs) such as Hibernate for Java
or SQLAlchemy for Python would prefer to define the different nodes and relations in
classes providing the database elements as objects and abstracting actual SQL-Queries.

For Python there exists a community driven project called neomodel (Anastasiou, 2019)
aiming to provide an object-graph mapping (OGM) for Python projects. Neomodel is
published under the MIT License.

class Partnership(StructuredRel):

since = DateTimeProperty(

default=lambda: datetime.now(pytz.utc)

)

class Country(StructuredNode):

name = StringProperty(unique_index=True, required=True)

class Interest(StructuredNode):

name = StringProperty(unique_index=True, required=True)

class Group(StructuredNode):

name = StringProperty(unique_index=True, required=True)

class Person(StructuredNode):

uid = UniqueIdProperty()

name = StringProperty(unique_index=True)

age = IntegerProperty(index=True, default=0)

# traverse outgoing relations

country = RelationshipTo(Country, 'IS_FROM')

interests = RelationshipTo(Interest, 'IS_INTERESTED_IN')

groups = RelationshipTo('Group', 'IS_MEMBER')

friends = Relationship('Person', 'FRIENDS_WITH', model=Partnership)

Listing 12: Example graph database model with neomodel

The implementation of the graph model mentioned in Figure 5.4 in Python has been
realized in Listing 12 following the neomodel documentation (Edwards, 2019). With this
model it is possible to create new nodes in the database by instantiating a new object of
the given classes as in Listing 13.
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lmeitner = Person(name='Lise Meitner', age=89)

lmeitner.save()

Listing 13: Creating a new person node in the database

To connect two nodes it is necessary to get both objects and to invoke the connect()

method as seen in Listing 14 on one of them. The get_or_create method simplifies
creation of nodes with no additional properties since it either returns an already existing
node or creates it.

country = Country.get_or_create({'name': 'Austria'})

lmeitner.country.connect(country[0])

Listing 14: Connecting a person and a country node

Retrieving one or more existing nodes can be done by filtering as shown in Listing 15.

curie = Person.nodes.filter(name='Marie Curie')

Listing 15: Querying for a person node by the name attribute

Queries using Cypher

Neo4j provides its own query language Cypher. It is developed with an open source
specification called openCypher (“openCypher – About”, 2018). Thus it should be
possible to use the same query language for graph processing in other databases – such
as SAP HANA or Redis. Its syntax is oriented on SQL statements though there are quite
some differences to better match with a graph model. Neo4j has an extensive introduction
how to use Cypher (“Neo4j Website: Cypher Query Language”, 2019). Therefore only a
short introduction should be given here.

Cypher uses two basic patterns. First of all there are nodes, denoted by enclosing
parentheses. The second pattern is used for relationships. They are expressed by two
dashes and may have a direction utilizing the greater-than/less-than signs. Furthermore,
the type of a relationship may be specified in brackets between the two dashes.

A few examples will make it easier to understand how these patterns can be used.

The simplest query would be to get all nodes and all relations between them without
regard to their labels. This can be achieved by calling
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MATCH (n) RETURN n

It is important to note that Cypher uses MATCH as a keyword similar to SQL’s SELECT.
Contrary to SQL it is necessary in Cypher to RETURN the previously matched nodes to
obtain them in the result. It is possible to declare the label of a node by calling

MATCH (p:Person) RETURN p

This would reduce the output to all persons and the relations between them.

As mentioned before Cypher supports a pattern for relations. To include them in a query
– e.g. for all Persons who have one or more friends the query would look like

MATCH (a:Person) -[:FRIENDS_WITH]- (b:Person) RETURN a, b

The relationship type in the brackets may be ommited to get all types of relations between
these nodes.

Similar to SQL, Cypher also supports a WHERE statement. To query for a specific Person
where the attribute name equals

”
Otto Hahn“ and all nodes connected to this person the

Cypher query would look like this

MATCH (p:Person)-[r]-(n) WHERE p.name = 'Otto Hahn' RETURN p, r, n

Of course Cypher offers a complete keyword set for all types of CRUD operations.
Interested readers should follow the introduction by Neo4j (“Neo4j Website: Cypher
Query Language”, 2019).

5.4.3. Conclusion

Getting started with Neo4j is relatively simple. There is plenty of documentation available
helping to implement a database model and an application based on it. Especially the
OGM Projects for Python are pretty advanced and suitable for production usage. Users
familiar with SQL will find Cypher not that difficult to get used to.

There are two major downsides to Neo4j. The first one is the memory footprint. A
newly set up instance already consumes more than 600MB of RAM – in comparison, a
PostgreSQL instance storing a couple hundred MB of data still consumes less than half
of that. The second downside is, that many features – especially regarding maintenance
and clustering – are preserved for the enterprise edition and not available in the open
source community edition. This makes it difficult if not impossible to use the community
edition in a production environment.
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5.5. Reflection

5.5.1. Alternative Graph Databases

OrientDB

OrientDB is one of the biggest competitors to Neo4j, developed by Callidus Software Inc.
(owned by SAP) and published under Apache-2 License (“OrientDB Website: OrientDB
vs Neo4j”, n.d.). Like Neo4j it is implemented in Java. OrientDB is a multi model
graph database, just as Neo4j, but also a document oriented database allowing relations
between documents (“OrientDB Website: Why OrientDB”, n.d.). As a query language
OrientDB uses SQL with a custom dialect to include features for traversals (“OrientDB
Website: OrientDB vs Neo4j”, n.d.). In comparison to Neo4j they claim to be a lot
faster (“OrientDB Website: OrientDB vs Neo4j”, n.d.). This claim is based on a paper
(Dayarathna & Suzumura, 2012), which has been released in 2012. As mentioned in
section 5.3.4 Neo4j has reimplemented their query engine since then.

A major selling point is the possibility to set up a highly-available (multi-master) cluster
of multiple nodes with the Open Source community version (“OrientDB Website: Support
and Subscriptions”, n.d.; “Setting up a Distributed Graph Database”, n.d.).

5.5.2. Conclusion

Even though there is extensive literature on the topic of Graph Databases, our group
was overall dissatisfied with the scientific resources we found. Most publications were
written by the same few people, not providing a distinct enough reflection on the topic.
Furthermore, while there were many publications around 2010 on this topic, literature
did not provide updates or added benchmarks of e.g. comparisons with other database
systems. We aim to close that gap with an updated summary on today’s Graph Database
theory and Neo4j.
In this chapter, we first gave an introduction into Graph Databases, providing an overview
of its history. Next, the basic underlying theory was explained and assessed critically. A
report on the implementation with Neo4j was given, stating its distinct characteristics
and concluding its value as a Graph Database implementation.

To conclude, we would also like to share our personal experience of working with Neo4j
and Graph Databases in general. Overall, we feel that with the concept of Graphs as a
database model one can easier map real life datastructures than with just a relational
structure. While the underlying theory is rather complex, we felt that there were sufficient
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resources to give a simple introduction into the topic. The implementation was enjoyable,
as the documentation for Neo4j was easily understandable and it did not take long until
the basic setup was complete. We especially enjoyed using community driven libraries;
when issues arose we were given an answer and help immediately, making our experience
overall very pleasant.

Future work to extend this paper could include assessing the enterprise edition. We were
unable to compare the community edition to the enterprise edition due to stellar pricing.
The fee-based version allows for clustering which would have been interesting to take
into account for our implementation. In addition, a deeper evaluation of alternatives
like OrientDB could be valuable, especially since OrientDB is an open source project
and provides clustering functionality in its community version. Lastly, Hypergraph
and Triplet propose interesting approaches to graph modeling and an assessment of the
differences and strengths would be valuable for the current literature landscape.
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6. Conclusion

With detailed assessments of several NoSQL database implementations, this book aimed
to answer the research question ”What are the characteristics of today’s popular (Open
Source) NoSQL databases in relation to the CAP theorem?”. For this, a detailed intro-
duction to wide-column-store, several key-value databases, document stores and graph
databases was given.

It is now clear that for no database implementation one can absolutely state that the
CAP theorem can be applied. While always some parts of the theorem apply to the
different implementations, as stated by the CAP literature itself, not all aspects can be
realized. Though one interesting result is that all database implementations aim to be
partition tolerant. It was furthermore shown that RethinkDB as well as Couchbase are
available, whereas the rest strives towards consistency.

The work of this book is limited by the fact that the research in most fields is not
up-to-date and literature is in some cases already deprecated. In addition to that, only
free versions of the specific database implementations could be considered, which limits
the final statement and answer of the research question.

Further work could include a new and more recent benchmark, including current problem
sets. A unified benchmark with which all database implementations could be compared
would be of immense value to the field of NoSQL databases.
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A. Cassandra query example

Create database, table, insert and select data

CREATE KEYSPACE people

WITH REPLICATION =

{ 'class' : 'SimpleStrategy', 'replication_factor' : 3 };

USE people;

CREATE COLUMNFAMILY users (

username varchar PRIMARY KEY,

name varchar,

lastname varchar,

email varchar,

age int

);

INSERT INTO users (username, name, lastname, email)

VALUES ('john', 'John', 'Smith', 'john@gmail.com');

INSERT INTO users (username, name, lastname, age)

VALUES ('jack', 'Jack', 'Sparrow', 33);

INSERT INTO users (username, name, lastname, email, age)

VALUES ('kate', 'Kate', 'Austen', null, 25);

SELECT * FROM users;

username | age | email | lastname | name

----------+------+----------------+----------+------

kate | 25 | null | Austen | Kate

john | null | john@gmail.com | Smith | John

jack | 33 | null | Sparrow | Jack

$ nodetool flush

$ sstabletump /var/lib/cassandra/data/people/*/mc-1-big-Data.db

[

{
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A. Cassandra query example

"partition" : {

"key" : [ "kate" ],

"position" : 0

},

"rows" : [

{

"type" : "row",

"position" : 45,

"liveness_info" : { "tstamp" : "2019-04-14T16:21:05.014317Z" },

"cells" : [

{ "name" : "age", "value" : 25 },

{

"name" : "email",

"deletion_info" :

{ "local_delete_time" : "2019-04-14T16:21:05Z" }

},

{ "name" : "lastname", "value" : "Austen" },

{ "name" : "name", "value" : "Kate" }

]

}

]

},

{

"partition" : {

"key" : [ "john" ],

"position" : 46

},

"rows" : [

{

"type" : "row",

"position" : 98,

"liveness_info" : { "tstamp" : "2019-04-14T16:21:04.982207Z" },

"cells" : [

{ "name" : "email", "value" : "john@gmail.com" },

{ "name" : "lastname", "value" : "Smith" },

{ "name" : "name", "value" : "John" }

]

}

]

},

{

"partition" : {

"key" : [ "jack" ],

"position" : 99
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},

"rows" : [

{

"type" : "row",

"position" : 144,

"liveness_info" : { "tstamp" : "2019-04-14T16:21:05.002672Z" },

"cells" : [

{ "name" : "age", "value" : 33 },

{ "name" : "lastname", "value" : "Sparrow" },

{ "name" : "name", "value" : "Jack" }

]

}

]

}

]
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B. RethinkDB List of Drivers1

Official Drivers

• JavaScript

• Ruby

• Python

• Java

Community Drivers

• C#

• C++

• Clojure

• Common Lisp

• Dart

• Delphi

• Elixir

• Erlang

• Go

• Haskell

1https://www.rethinkdb.com/docs/install-drivers/
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• Lua

• Nim

• Perl

• PHP

• R

• Rust

• Swift

Limited Drivers

• Objective C

• Scala
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